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• Here we consider linear partial differential equations (PDEs), 
which can be solved using finite difference methods.

• Nonlinear PDEs require more advanced methods like finite 
element or finite volume methods, or certain approximations. 
Examples are Navier-Stokes or time-dependent Ginzburg-Landau 
equations.

• Main concepts are already introduced. Here examples of elliptic, 
parabolic, and hyperbolic equations.

• In contrast to the numerical solution of ODEs, there exists no 
general recipe for the solution of PDEs.

• As for ODEs, the problem is only fully determined when initial 
and/or boundary conditions have been defined.



Classification
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For a real-valued function u(x, y) of two independent real variables, 
x and y, a second-order, linear, constant-coefficient PDE for u(x,y) 
takes the form:

If interpreted as polynomial in two variables defines the following 
notation:
• Elliptic PDE: B2-AC<0 : Poisson equation, Laplace equation
• Parabolic PDE: B2-AC=0 :  heat conduction, particle diffusion, and 

pricing of derivative investment instruments
• Hyperbolic PDE: B2-AC>0 : wave equation

Parabolic partial differential equation

A parabolic partial differential equation  is a type of partial differential equation (PDE).
Parabolic PDEs are used to describe a wide variety of time-dependent phenomena, including heat
conduction, particle diffusion, and pricing of derivative investment instruments.

Definition
Solution
Backward parabolic equation
Examples
See also
References

To define the simplest kind of parabolic PDE, consider a real-valued function  of  two
independent real variables,  and . A second-order, linear, constant-coefficient PDE for  takes
the form

and this PDE is classified as being parabolic if the coefficients satisfy the condition

Usually  represents one-dimensional position and  represents time, and the PDE is  solved
subject to prescribed initial and boundary conditions.

The name "parabolic"  is  used because the assumption on the coefficients  is  the same as  the
condition  for  the  analytic  geometry  equation   to
define a planar parabola.

The basic example of a parabolic PDE is the one-dimensional heat equation,

where  is the temperature at time  and at position  along a thin rod, and  is a positive
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The Poisson Equation is an example of an elliptic PDE.
Here we consider the force of F(r,t) acting on a charged moving particle in 3D 
space, r, and time, t. Its velocity is v and the force is a result of the electric 
field, E(r,t), and magnetic field, B(r,t):

In the electrostatic case [ B=0, E(r,t)=E(r) ]:

with charge density 𝜌(r,t).  Furthermore, with the electrostatic potential 𝜑(r,t) 
we can write:

and as a result:

The Poisson equation
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158 11 Partial Differential Equations

and initial value problems it is essential to check carefully that the discretization of
the time axis is not in conflict with the discretization of the space domain. This is
of particular importance in the numerical treatment of hyperbolic PDEs, where the
so called COURANT-FRIEDRICHS-LEWY (CFL) condition determines the stability
of the algorithm. We shall come back to this point in Sects. 11.3 and 11.4. Finally,
we conclude this chapter with a discussion of the numerical solution of the time-
dependent SCHRÖDINGER equation.

11.2 The POISSON Equation

We consider the POISSON equation as a model for an elliptic PDE [8, 9]. Neverthe-
less, we review briefly some basics of electrodynamics [10, 11]. The force F.r; t/
as a function of position r 2 R3 and time t 2 RC acting on a particle with charge
q, which moves with velocity v within an electromagnetic field described by the
electric field E.r; t/ and the magnetic field B.r; t/, is determined from:

F.r; t/ D q ŒE.r; t/C v ! B.r; t/! : (11.1)

We consider here the electrostatic case which is characterized by a zero magnetic
field [B.r; t/ D 0] and a time independent electric field. The electric field E itself is
described by the equation

r " E.r/ D 1

"0
#.r/ ; (11.2)

where the charge density #.r; t/ acts as the source of the electric field E.r; t/.
Here "0 is the dielectric permittivity of vacuum. Furthermore, the electric field E
is connected to the electrostatic potential '.r/ via

E.r/ D #r'.r/ : (11.3)

Thus, Eq. (11.2) is reformulated as:

$'.r/ D ##.r/
"0

: (11.4)

This equation is referred to as the POISSON equation and in the particular case of
#.r/ D 0 it is referred to as the LAPLACE equation [12].
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Poisson equation



…
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For the case 𝜌(r,t)=0, the equation is called the Laplace equation.

Here we focus on the 2D static case, and solve the Poisson equation on the domain 
𝛺=[0,Lx]×[0,Ly], where we define the values of 𝜑(x,y) on the boundary of 𝛺, i.e. ∂𝛺, by a 
function g(x,y) and get the two-dimensional boundary value problem: (𝜖0 is absorbed in  𝜌)

We discretize x and y coordinates:

where hx and hy are the grid spacings in x and y directions

11.2 The POISSON Equation 159

We focus now on the numerical solution of the two dimensional POISSON

equation (11.4) on a rectangular domain˝ D Œ0;Lx!!Œ0;Ly! together with boundary
conditions '.x; y/ D g.x; y/ on @˝ . In detail, we want to solve the two-dimensional
boundary value problem

8
<̂

:̂

@2

@x2
'.x; y/C @2

@y2
'.x; y/ D "".x; y/ ; .x; y/ 2 ˝ ;

'.x; y/ D g.x; y/ ; .x; y/ 2 @˝ ;

(11.5)

where we absorbed #0 into the charge density ".x; y/. Note that a treatment of the
three dimensional case can be carried out in analogue.

We employ a finite difference approximation to the derivatives which appear in
Eq. (11.5) (see Chap. 2) and we define grid-points in x and y direction via

xi D x0 C ihx; i D 0; 1; 2; : : : ; n ; (11.6a)

yj D y0 C jhy; j D 0; 1; 2; : : : ;m ; (11.6b)

where hx and hy denote the grid-spacing in x- and y-direction, respectively. As
discussed in Chap. 2 we consider only equally spaced grid-points. An extension to
non-uniform grids is straight forward.

We define the function values on the grid-points as

'i;j # '.xi; yj/ ; (11.7)

and similarly "i;j # ".xi; yj/. Consequently, we find the finite difference approxima-
tion of Eq. (11.5):

'i!1;j " 2'i;j C 'iC1;j
h2x

C 'i;j!1 " 2'i;j C 'i;jC1
h2y

D ""i;j : (11.8)

The boundary conditions (11.5) can be written as

'0;j D g0;j ; j D 0; 1; : : : ;m ; (11.9a)

'n;j D gn;j ; j D 0; 1; : : : ;m ; (11.9b)

'i;0 D gi;0 ; i D 1; 2; : : : ; n " 1 ; (11.9c)

'i;m D gi;m ; i D 1; 2; : : : ; n " 1 : (11.9d)
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Poisson equation: discretization
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The values of 𝜑 and 𝜌 at a grid point (xi,yj) are defined by:

The Poisson equation, discretized by finite differences is then given by

or:

for i=1,…n, j=1,…m
And the boundary conditions are:
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Equation (11.8) is multiplied by !h2xh
2
y=2 and we obtain after rearranging terms

!
h2x C h2y

"
'i;j ! 1

2

#
h2y
!
'i!1;j C 'iC1;j

"
C h2x

!
'i;j!1 C 'i;jC1

"$
D .hxhy/2

2
!i;j ;

(11.10)

for i D 1; : : : ; n and j D 1; : : : ;m. There are different strategies how this set of
equations might be solved. The common strategy is to employ the assignments

'1;1 ! '1 ;

'1;2 ! '2 ;

:::
:::

'n;m ! '` ; (11.11)

where ` D nm. Equation (11.10) is then rewritten as a matrix equation with a
vector of unknowns ' D .'1; '2; : : : ; '`/

T according to Eq. (11.11). The boundary
conditions are to be included in the matrix. This matrix equation is then solved either
by direct or iterative methods as they are discussed in Appendix C.

It is our plan to solve Eq. (11.10) iteratively. This requires the introduction of
a superscript iteration index t and ' t

i;j denotes the function value '.xi; yj/ after t-
iteration steps. There are two different implementations of an iterative solution,
namely the GAUSS-SEIDEL or the JACOBI method (Appendix C). They differ only
in the update procedure of the function values ' t

i;j at the grid-points. The basic idea
is to develop an update algorithm which expresses the function values ' t

i;j with the
help of function values at already updated grid-points and of function values ' t!1

i;j
determined in the preceding iteration step [Appendix, Eq. (C.27)].

We formulate this iteration rule as

' tC1
i;j D .hxhy/2

2.h2x C h2y/
!i;j C

1

2.h2x C h2y/

h
h2y
%
' tC1
i!1;j C ' t

iC1;j
&

Ch2x
%
' tC1
i;j!1 C ' t

i;jC1
&i

; (11.12)

where we abstained from incorporating a relaxation parameter (see Appendix C).
Note that by using the iteration rule (11.12) the boundary conditions have to be
accounted for in an additional step.



Solution of the boundary problem
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To solve for the unknown values of 𝜑i,j, one usually assigns a single index:

with ℓ=nm

And then solves the resulting linear equation system for vector 𝜑=(𝜑1,…,𝜑ℓ)T directly 
(GE) or using iterative methods (see Appendix C). The boundary values are included in 
the matrix.

Here we will use an iterative method, which approximates the solution sequentially and 
thus introduces a “time” index for the 𝜑k which denotes the successively improved 
approximations for the real solution.
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a superscript iteration index t and ' t

i;j denotes the function value '.xi; yj/ after t-
iteration steps. There are two different implementations of an iterative solution,
namely the GAUSS-SEIDEL or the JACOBI method (Appendix C). They differ only
in the update procedure of the function values ' t

i;j at the grid-points. The basic idea
is to develop an update algorithm which expresses the function values ' t

i;j with the
help of function values at already updated grid-points and of function values ' t!1

i;j
determined in the preceding iteration step [Appendix, Eq. (C.27)].

We formulate this iteration rule as

' tC1
i;j D .hxhy/2

2.h2x C h2y/
!i;j C

1

2.h2x C h2y/

h
h2y
%
' tC1
i!1;j C ' t

iC1;j
&

Ch2x
%
' tC1
i;j!1 C ' t

i;jC1
&i

; (11.12)

where we abstained from incorporating a relaxation parameter (see Appendix C).
Note that by using the iteration rule (11.12) the boundary conditions have to be
accounted for in an additional step.
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• Iterative methods formally yield the solution x of a linear system after an 
infinite number of steps.

• At each step they require the computation of the residual of the system. 
• In the case of a full matrix, their computational cost is therefore of the order 

of n2 operations for each iteration, to be compared with an overall cost of the 
order of 2/3n3 operations needed by direct methods. 

à Iterative methods can therefore become competitive with direct methods 
provided the number of iterations that are required to converge (within a 
prescribed tolerance) is either independent of n or scales sublinearly with 
respect to n.

(Some) iterative methods can be parallelized! 
Direct methods are typically sequential, and each step depends on 
the result of the previous one.
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The basic idea of iterative methods is to construct a sequence of 
vectors x(k) that enjoy the property of convergence:

where x is the solution of Ax=b

The iteration processes is stopped when
with a prescribed tolerance ².
Problem with this conditions: Impractical, since we do not know x.

General scheme:

4
Iterative Methods for Solving Linear
Systems

Iterative methods formally yield the solution x of a linear system after an
infinite number of steps. At each step they require the computation of the
residual of the system. In the case of a full matrix, their computational
cost is therefore of the order of n2 operations for each iteration, to be
compared with an overall cost of the order of 2

3n
3 operations needed by

direct methods. Iterative methods can therefore become competitive with
direct methods provided the number of iterations that are required to con-
verge (within a prescribed tolerance) is either independent of n or scales
sublinearly with respect to n.

In the case of large sparse matrices, as discussed in Section 3.9, direct
methods may be unconvenient due to the dramatic fill-in, although ex-
tremely efficient direct solvers can be devised on sparse matrices featuring
special structures like, for example, those encountered in the approximation
of partial differential equations (see Chapters 12 and 13).

Finally, we notice that, when A is ill-conditioned, a combined use of direct
and iterative methods is made possible by preconditioning techniques that
will be addressed in Section 4.3.2.

4.1 On the Convergence of Iterative Methods

The basic idea of iterative methods is to construct a sequence of vectors
x(k) that enjoy the property of convergence

x = lim
k→∞

x(k), (4.1)
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where x is the solution to (3.2). In practice, the iterative process is stopped
at the minimum value of n such that ‖x(n) − x‖ < ε, where ε is a fixed
tolerance and ‖ · ‖ is any convenient vector norm. However, since the exact
solution is obviously not available, it is necessary to introduce suitable
stopping criteria to monitor the convergence of the iteration (see Section
4.6).

To start with, we consider iterative methods of the form

x(0) given, x(k+1) = Bx(k) + f , k ≥ 0, (4.2)

having denoted by B an n × n square matrix called the iteration matrix
and by f a vector that is obtained from the right hand side b.

Definition 4.1 An iterative method of the form (4.2) is said to be consis-
tent with (3.2) if f and B are such that x = Bx + f . Equivalently,

f = (I − B)A−1b.

!

Having denoted by

e(k) = x(k) − x (4.3)

the error at the k-th step of the iteration, the condition for convergence
(4.1) amounts to requiring that lim

k→∞
e(k) = 0 for any choice of the initial

datum x(0) (often called the initial guess).
Consistency alone does not suffice to ensure the convergence of the iter-

ative method (4.2), as shown in the following example.

Example 4.1 To solve the linear system 2Ix = b, consider the iterative method

x(k+1) = −x(k) + b,

which is obviously consistent. This scheme is not convergent for any choice of
the initial guess. If, for instance, x(0) = 0, the method generates the sequence
x(2k) = 0, x(2k+1) = b, k = 0, 1, . . . .

On the other hand, if x(0) = 1
2b the method is convergent. •

Theorem 4.1 Let (4.2) be a consistent method. Then, the sequence of vec-
tors

{
x(k)} converges to the solution of (3.2) for any choice of x(0) iff

ρ(B) < 1.

Proof. From (4.3) and the consistency assumption, the recursive relation e(k+1) =
Be(k) is obtained. Therefore,

e(k) = Bke(0), ∀k = 0, 1, . . . (4.4)
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Thus, thanks to Theorem 1.5, it follows that lim
k→∞

Bke(0) = 0 for any e(0) iff

ρ(B) < 1.
Conversely, suppose that ρ(B) > 1, then there exists at least one eigenvalue

λ(B) with module greater than 1. Let e(0) be an eigenvector associated with λ;
then Be(0) = λe(0) and, therefore, e(k) = λke(0). As a consequence, e(k) cannot
tend to 0 as k → ∞, since |λ| > 1. !

From (1.23) and Theorem 1.5 it follows that a sufficient condition for con-
vergence to hold is that ‖B‖ < 1, for any matrix norm. It is reasonable
to expect that the convergence is faster when ρ(B) is smaller so that an
estimate of ρ(B) might provide a sound indication of the convergence of
the algorithm. Other remarkable quantities in convergence analysis are con-
tained in the following definition.

Definition 4.2 Let B be the iteration matrix. We call:

1. ‖Bm‖ the convergence factor after m steps of the iteration;

2. ‖Bm‖1/m the average convergence factor after m steps;

3. Rm(B) = − 1
m log ‖Bm‖ the average convergence rate after m steps.

!

These quantities are too expensive to compute since they require evaluating
Bm. Therefore, it is usually preferred to estimate the asymptotic conver-
gence rate, which is defined as

R(B) = lim
k→∞

Rk(B) = − log ρ(B) (4.5)

where Property 1.13 has been accounted for. In particular, if B were sym-
metric, we would have

Rm(B) = − 1
m

log ‖Bm‖2 = − log ρ(B).

In the case of nonsymmetric matrices, ρ(B) sometimes provides an overop-
timistic estimate of ‖Bm‖1/m (see [Axe94], Section 5.1). Indeed, although
ρ(B) < 1, the convergence to zero of the sequence ‖Bm‖ might be non-
monotone (see Exercise 1). We finally notice that, due to (4.5), ρ(B) is
the asymptotic convergence factor. Criteria for estimating the quantities
defined so far will be addressed in Section 4.6.

Remark 4.1 The iterations introduced in (4.2) are a special instance of
iterative methods of the form

x(0) = f0(A,b),

x(n+1) = fn+1(x(n),x(n−1), . . . ,x(n−m),A,b), for n ≥ m,
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In this general scheme fi and x(m),…, x(1) are given functions and vectors, 
respectively. 
• The number of steps which the current iteration depends on is called the order 

of the method. 
• If the functions fi are independent of the step index i, the method is called 

stationary, otherwise it is nonstationary. 
• Finally, if fi depends linearly on x(0), …, x(m), the method is called linear, 

otherwise it is nonlinear.
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Here we consider an iteration of the form

• B is an n x n square matrix called the iteration matrix
• f is a vector obtained from the right-hand side b
• Consistent with Ax=b if x=Bx+f or f=(I-B)A-1b

Using the above splitting of A, we calculate x(k) for k>0, solving

i.e., B=P-1N and f=P-1b

124 4. Iterative Methods for Solving Linear Systems

where x is the solution to (3.2). In practice, the iterative process is stopped
at the minimum value of n such that ‖x(n) − x‖ < ε, where ε is a fixed
tolerance and ‖ · ‖ is any convenient vector norm. However, since the exact
solution is obviously not available, it is necessary to introduce suitable
stopping criteria to monitor the convergence of the iteration (see Section
4.6).

To start with, we consider iterative methods of the form

x(0) given, x(k+1) = Bx(k) + f , k ≥ 0, (4.2)

having denoted by B an n × n square matrix called the iteration matrix
and by f a vector that is obtained from the right hand side b.

Definition 4.1 An iterative method of the form (4.2) is said to be consis-
tent with (3.2) if f and B are such that x = Bx + f . Equivalently,

f = (I − B)A−1b.

!

Having denoted by

e(k) = x(k) − x (4.3)

the error at the k-th step of the iteration, the condition for convergence
(4.1) amounts to requiring that lim

k→∞
e(k) = 0 for any choice of the initial

datum x(0) (often called the initial guess).
Consistency alone does not suffice to ensure the convergence of the iter-

ative method (4.2), as shown in the following example.

Example 4.1 To solve the linear system 2Ix = b, consider the iterative method

x(k+1) = −x(k) + b,

which is obviously consistent. This scheme is not convergent for any choice of
the initial guess. If, for instance, x(0) = 0, the method generates the sequence
x(2k) = 0, x(2k+1) = b, k = 0, 1, . . . .

On the other hand, if x(0) = 1
2b the method is convergent. •

Theorem 4.1 Let (4.2) be a consistent method. Then, the sequence of vec-
tors

{
x(k)} converges to the solution of (3.2) for any choice of x(0) iff

ρ(B) < 1.

Proof. From (4.3) and the consistency assumption, the recursive relation e(k+1) =
Be(k) is obtained. Therefore,

e(k) = Bke(0), ∀k = 0, 1, . . . (4.4)

Here we focus on stationary, linear iterative methods of order one. 
• general technique: additive splitting of matrix A of form A=P−N
• P and N are two suitable matrices and P is nonsingular
• P is called preconditioning matrix or preconditioner
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where fi and x(m), . . . ,x(1) are given functions and vectors, respectively.
The number of steps which the current iteration depends on is called the
order of the method. If the functions fi are independent of the step index i,
the method is called stationary, otherwise it is nonstationary. Finally, if fi
depends linearly on x(0), . . . ,x(m), the method is called linear, otherwise
it is nonlinear.

In the light of these definitions, the methods considered so far are there-
fore stationary linear iterative methods of first order. In Section 4.3, exam-
ples of nonstationary linear methods will be provided. !

4.2 Linear Iterative Methods

A general technique to devise consistent linear iterative methods is based
on an additive splitting of the matrix A of the form A=P−N, where P
and N are two suitable matrices and P is nonsingular. For reasons that
will be clear in the later sections, P is called preconditioning matrix or
preconditioner.

Precisely, given x(0), one can compute x(k) for k ≥ 1, solving the systems

Px(k+1) = Nx(k) + b, k ≥ 0. (4.6)

The iteration matrix of method (4.6) is B = P−1N, while f = P−1b. Alter-
natively, (4.6) can be written in the form

x(k+1) = x(k) + P−1r(k), (4.7)

where

r(k) = b − Ax(k) (4.8)

denotes the residual vector at step k. Relation (4.7) outlines the fact that
a linear system, with coefficient matrix P, must be solved to update the
solution at step k+1. Thus P, besides being nonsingular, ought to be easily
invertible, in order to keep the overall computational cost low. (Notice that,
if P were equal to A and N=0, method (4.7) would converge in one iteration,
but at the same cost of a direct method).

Let us mention two results that ensure convergence of the iteration (4.7),
provided suitable conditions on the splitting of A are fulfilled (for their
proof, we refer to [Hac94]).

Property 4.1 Let A = P − N, with A and P symmetric and positive def-
inite. If the matrix 2P − A is positive definite, then the iterative method
defined in (4.7) is convergent for any choice of the initial datum x(0) and

ρ(B) = ‖B‖A = ‖B‖P < 1.
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This scheme can be written as

with the residual

We note that:
1. P should be chosen such that it can be easily inverted
2. If P=A and N=0, the iteration would converge in one step
3. The residual is a measure of how good x(k) approximates the real solution x
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where fi and x(m), . . . ,x(1) are given functions and vectors, respectively.
The number of steps which the current iteration depends on is called the
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depends linearly on x(0), . . . ,x(m), the method is called linear, otherwise
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on an additive splitting of the matrix A of the form A=P−N, where P
and N are two suitable matrices and P is nonsingular. For reasons that
will be clear in the later sections, P is called preconditioning matrix or
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natively, (4.6) can be written in the form

x(k+1) = x(k) + P−1r(k), (4.7)

where

r(k) = b − Ax(k) (4.8)

denotes the residual vector at step k. Relation (4.7) outlines the fact that
a linear system, with coefficient matrix P, must be solved to update the
solution at step k+1. Thus P, besides being nonsingular, ought to be easily
invertible, in order to keep the overall computational cost low. (Notice that,
if P were equal to A and N=0, method (4.7) would converge in one iteration,
but at the same cost of a direct method).

Let us mention two results that ensure convergence of the iteration (4.7),
provided suitable conditions on the splitting of A are fulfilled (for their
proof, we refer to [Hac94]).

Property 4.1 Let A = P − N, with A and P symmetric and positive def-
inite. If the matrix 2P − A is positive definite, then the iterative method
defined in (4.7) is convergent for any choice of the initial datum x(0) and

ρ(B) = ‖B‖A = ‖B‖P < 1.
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If the diagonal entries of A are nonzero, we can single out in each equation the 
corresponding unknown on the diagonal and write:

In the Jacobi method x(k+1) is computed by [x(0) can be an arbitrary initial guess]

This corresponds to a splitting: P=D, N=D-A=E+F,
• D is a diagonal matrix having the diagonal elements of A
• E is the lower triangular matrix with elements: eij=-aij for i>j, 0 else
• F the upper triangular matrix: fij=-aij for i<j, 0 else

A generalization is the over-relaxation method (JOR):

4.2 Linear Iterative Methods 127

Moreover, the convergence of the iteration is monotone with respect to the
norms ‖ · ‖P and ‖ · ‖A (i.e., ‖e(k+1)‖P < ‖e(k)‖P and ‖e(k+1)‖A < ‖e(k)‖A
k = 0, 1, . . . ).

Property 4.2 Let A = P − N with A symmetric and positive definite. If
the matrix P+PT −A is positive definite, then P is invertible, the iterative
method defined in (4.7) is monotonically convergent with respect to norm
‖ · ‖A and ρ(B) ≤ ‖B‖A < 1.

4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods
In this section we consider some classical linear iterative methods.

If the diagonal entries of A are nonzero, we can single out in each equation
the corresponding unknown, obtaining the equivalent linear system

xi =
1
aii



bi −
n∑

j=1
j !=i

aijxj



 , i = 1, . . . , n. (4.9)

In the Jacobi method, once an arbitrarily initial guess x0 has been chosen,
x(k+1) is computed by the formulae

x(k+1)
i =

1
aii



bi −
n∑

j=1
j !=i

aijx
(k)
j



 , i = 1, . . . , n. (4.10)

This amounts to performing the following splitting for A

P = D, N = D − A = E + F,

where D is the diagonal matrix of the diagonal entries of A, E is the lower
triangular matrix of entries eij = −aij if i > j, eij = 0 if i ≤ j, and F is
the upper triangular matrix of entries fij = −aij if j > i, fij = 0 if j ≤ i.
As a consequence, A=D-(E+F).

The iteration matrix of the Jacobi method is thus given by

BJ = D−1(E + F) = I − D−1A. (4.11)

A generalization of the Jacobi method is the over-relaxation method
(or JOR), in which, having introduced a relaxation parameter ω, (4.10) is
replaced by

x(k+1)
i =

ω

aii



bi −
n∑

j=1
j !=i

aijx
(k)
j



 + (1 − ω)x(k)
i , i = 1, . . . , n.
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j
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 + (1 − ω)x(k)
i , i = 1, . . . , n.

where ! is a 
relaxation parameter 
0<!· 1 
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The corresponding iteration matrix is

BJω = ωBJ + (1 − ω)I. (4.12)

In the form (4.7), the JOR method corresponds to

x(k+1) = x(k) + ωD−1r(k).

This method is consistent for any ω "= 0 and for ω = 1 it coincides with
the Jacobi method.

The Gauss-Seidel method differs from the Jacobi method in the fact that
at the k+ 1-th step the available values of x(k+1)

i are being used to update
the solution, so that, instead of (4.10), one has
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This method amounts to performing the following splitting for A

P = D − E, N = F,

and the associated iteration matrix is

BGS = (D − E)−1F. (4.14)

Starting from Gauss-Seidel method, in analogy to what was done for
Jacobi iterations, we introduce the successive over-relaxation method (or
SOR method)
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i =

ω

aii
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aijx
(k+1)
j −
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aijx
(k)
j



 + (1 − ω)x(k)
i , (4.15)

for i = 1, . . . , n. The method (4.15) can be written in vector form as

(I − ωD−1E)x(k+1) = [(1 − ω)I + ωD−1F]x(k) + ωD−1b (4.16)

from which the iteration matrix is
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Multiplying by D both sides of (4.16) and recalling that A = D − (E + F)
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x(k+1) = x(k) +
(

1
ω

D − E
)−1

r(k).

It is consistent for any ω "= 0 and for ω = 1 it coincides with Gauss-Seidel
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while if ω > 1 it is called over-relaxation.
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Remarks:
• In the Jacobi method P=D can be easily inverted
• Each iteration step required therefore only one matrix multiplication, i.e., Ax(k)

• Therefore, it can be easily parallelized
• The method converges when A is strictly diagonally dominant, i.e., |aii| is larger than 

the sum of all other absolute values of the elements in the row
• Standard convergence criterion: ½(D-1N)<1 (½ is the spectral radius, i.e., the largest 

absolute value of this eigenvalues)
• Jacobi is convergent if A and (2D-A) are symmetric and positive definite
• The above convergence criterions are not always necessary for convergence…
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Choose an initial guess x(0) to the solution
k = 0
check if convergence is reached, e.g., ||r(k)||1<²
while convergence not reached do

for i := 1 step until n do
¾ = 0
for j := 1 step until n do

if j ≠ i then
¾ = ¾ + aij xj(k)

end if
end (j-loop)
xi(k+1) = ( bi - ¾ )/ aii

end (i-loop)
check if convergence is reached
k = k + 1

loop (while convergence condition not reached) 
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The Gauss-Seidel method differs from the Jacobi method in the fact that at the (k+1)-th step 
the available values of xi

(k+1) are being used to update the solution

i.e., P=D-E , N=F
The related over-relaxation iteration (SOR) is
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yields the following form (4.7) of the SOR method

x(k+1) = x(k) +
(

1
ω

D − E
)−1

r(k).

It is consistent for any ω "= 0 and for ω = 1 it coincides with Gauss-Seidel
method. In particular, if ω ∈ (0, 1) the method is called under-relaxation,
while if ω > 1 it is called over-relaxation.

Remarks:
• GS is monotonically convergent if A is symmetric and positive definite
• GS converges also for the same criteria as Jacobi
• GS is not parallelizable
• GS has less memory requirements than Jacobi, since the current iteration can 

overwrite elements of the previous approximation
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We denote the approximation for 𝜑i,j as 𝜑i,j
t after t iteration steps and define the 

explicit iteration rule:

Next, we solve an explicit Poisson equation.

160 11 Partial Differential Equations

Equation (11.8) is multiplied by !h2xh
2
y=2 and we obtain after rearranging terms

!
h2x C h2y

"
'i;j ! 1

2

#
h2y
!
'i!1;j C 'iC1;j

"
C h2x

!
'i;j!1 C 'i;jC1

"$
D .hxhy/2

2
!i;j ;

(11.10)

for i D 1; : : : ; n and j D 1; : : : ;m. There are different strategies how this set of
equations might be solved. The common strategy is to employ the assignments

'1;1 ! '1 ;

'1;2 ! '2 ;

:::
:::

'n;m ! '` ; (11.11)

where ` D nm. Equation (11.10) is then rewritten as a matrix equation with a
vector of unknowns ' D .'1; '2; : : : ; '`/

T according to Eq. (11.11). The boundary
conditions are to be included in the matrix. This matrix equation is then solved either
by direct or iterative methods as they are discussed in Appendix C.

It is our plan to solve Eq. (11.10) iteratively. This requires the introduction of
a superscript iteration index t and ' t

i;j denotes the function value '.xi; yj/ after t-
iteration steps. There are two different implementations of an iterative solution,
namely the GAUSS-SEIDEL or the JACOBI method (Appendix C). They differ only
in the update procedure of the function values ' t

i;j at the grid-points. The basic idea
is to develop an update algorithm which expresses the function values ' t

i;j with the
help of function values at already updated grid-points and of function values ' t!1

i;j
determined in the preceding iteration step [Appendix, Eq. (C.27)].

We formulate this iteration rule as

' tC1
i;j D .hxhy/2

2.h2x C h2y/
!i;j C

1

2.h2x C h2y/

h
h2y
%
' tC1
i!1;j C ' t

iC1;j
&

Ch2x
%
' tC1
i;j!1 C ' t

i;jC1
&i

; (11.12)

where we abstained from incorporating a relaxation parameter (see Appendix C).
Note that by using the iteration rule (11.12) the boundary conditions have to be
accounted for in an additional step.
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We use the Dirichlet boundary conditions: 
𝜑(0,y)=𝜑(Lx,y)=0 in x-direction and 
𝜑(x,0)=𝜑(x,Ly)=0 in y-direction

These boundary conditions can be integrated into the iteration rule by 
limiting the loop over the interior grid points and leave the boundary values 
of 𝜑 unchanged.
We use Lx=Ly=10 and n=m=100 and define the domains:

on which we define the charge density 𝜌

11.2 The POISSON Equation 161

Let us specify the boundary conditions for a concrete problem: We we want
to determine the electrostatic potential of an electric monopole, dipole, and
quadrupole, respectively. They are placed inside a grounded box of dimensions
Lx and Ly. Thus, we have to impose DIRICHLET boundary conditions '.0; y/ D
'.Lx; y/ D 0 in x-direction and '.x; 0/ D '.x;Ly/ D 0 in y-direction. In
this particular case the boundary conditions can be made part of Eq. (11.12) by
restricting the loop over the x-grid (y-grid) to i D 2; : : : ;N ! 1 which leaves the
boundary points '.0; y/ ['.x; 0/] and '.Lx; y/ ['.x;Ly/] unchanged. Furthermore
we set Lx D Ly D 10, the number of grid-points on both axes to n D m D 100, and
define the domains:

˝1 D
!
x n
2!10; x n

2

"
"
!
ym
2 !10; ym

2

"
; (11.13a)

˝2 D
!
x n
2
; x n

2C10
"

"
!
ym
2 !10; ym

2

"
; (11.13b)

˝3 D
!
x n
2!10; x n

2

"
"
!
ym
2
; ym

2C10
"
; (11.13c)

˝4 D
!
x n
2
; x n

2C10
"

"
!
ym
2
; ym

2C10
"
: (11.13d)

The charge density !.x; y/ is described by three different scenarios, namely the
electric monopole

!1.x; y/ D
(
50 .x; y/ 2 ˝1 [˝2 [˝3 [˝4 ;

0 elsewhere;
(11.14a)

the electric dipole

!2.x; y/ D

8
ˆ̂<

ˆ̂:

50 .x; y/ 2 ˝1 [˝2 ;

!50 .x; y/ 2 ˝3 [˝4 ;

0 elsewhere;

(11.14b)

and the electric quadrupole:

!3.x; y/ D

8
ˆ̂<

ˆ̂:

50 .x; y/ 2 ˝1 [˝4 ;

!50 .x; y/ 2 ˝2 [˝3 ;

0 elsewhere:

(11.14c)

These charge densities are illustrated in Fig. 11.1.
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Here:

a) Monopole:

b) Dipole:

c) Quadropole:
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Fig. 11.1 The electric monopole, dipole, and quadrupole charge densities (a) !1.x; y/, (b) !2.x; y/,
and (c) !3.x; y/, respectively, as defined in Eq. (11.14)

The solution of Eq. (11.12) is regarded to be converged if the potential '.x; y/
does not change significantly between two consecutive iteration steps, i.e.

max
i;j

!
j' t

i;j ! ' t!1
i;j j

"
< " ; (11.15)

where " D 10!4 is the required accuracy. A criterion to check the relative
change can be formulated in a similar fashion. The resulting potential profiles
'.x; y/ are presented in Fig. 11.2. They reflect perfectly the symmetries of the
charge densities !1.x; y/, !2.x; y/, and !3.x; y/, respectively. Finally, standard finite
differencemethods can be applied to calculate, based on Eq. (11.3), the electric field
E.x; y/ from the potential profiles '.x; y/.1

1We note that the electrostatic potentials that we calculated here numerically can also be
determined analytically with the method of mirror charges [10].
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We consider the iteration converged at iteration t, when

We choose 𝜂=10-4. From the solution for 𝜑(x,y) we can then obtain E.
Solutions:
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Fig. 11.2 Potential profile '.x; y/ obtained for charge density (a) !1.x; y/, (b) !2.x; y/, and
(c) !3.x; y/

11.3 The Time-Dependent Heat Equation

We discuss here the numerical solution of the time-dependent heat equation [13,
14] which is a representative of parabolic PDEs. This equation has already been
introduced in Sect. 9.1, Eq. (9.1), and is, reduced to the one-dimensional case, of the
form

@

@t
T.x; t/ D "

@2

@x2
T.x; t/ ; (11.16)

with the thermal diffusivity ". It is augmented by appropriate boundary and initial
conditions. Again, we will not discuss the extension to higher dimensions since it
is straight forward, however, maybe tedious in the general case. We approximate
the right hand side of Eq. (11.16) with the help of the central finite difference
approximation (Sect. 2.2) and obtain

@

@t
Tk.t/ D "

Tk!1.t/ ! 2Tk.t/C TkC1.t/
h2

; (11.17)
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We already discussed the stationary heat equation. Here we use the 1D time-
dependent heat equation as an example of a parabolic PDE

With the central difference approximation for the rhs, we write:

where h is the grid spacing in x-direction: xk=x0+k*h, k=0,…,N and 
correspondingly Tk(t)=T(xk,t)
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For the discretization of the time derivate we can choose any of the 
methods we have studied so far. Here we compare: explicit Euler, implicit 
Euler, and Crank-Nicolson. The latter is typically the best for parabolic PDEs.
With

we can write for the explicit Euler scheme:

or 

which is straightforward to solve, since the rhs only depends on the solution 
for the previous time step. This method is stable for
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with the usual discretization xk D x0 C kh, k D 0; : : : ;N, in combination with the
notation Tk.t/ ! T.xk; t/.

The time derivative in Eq. (11.17) can be approximated with the help of methods
already discussed in Chap. 5. In particular, one has to decide whether the solution
of Eq. (11.17) should be approximated by an explicit or an implicit integrator. In
order to emphasize the differences between the two methods, the application of the
explicit EULER and of the implicit EULER method will be studied. However, more
complex integrators may be applied as well. In particular, the CRANK-NICOLSON

method [15] proved to be very useful for the solution of parabolic differential
equations.

We define tn D t0 C n!t and Tn
k ! Tk.tn/ and employ the explicit EULER

scheme (5.9) in Eq. (11.17) to get

TnC1
k " Tn

k

!t
D "

Tn
k!1 " 2Tn

k C Tn
kC1

h2
; (11.18)

with the solution:

TnC1
k D Tn

k C "!t
Tn
k!1 " 2Tn

k C Tn
kC1

h2
: (11.19)

The right hand side of this equation depends only on temperatures of the previous
time step, since we used an explicit method. Although this might seem advantageous
on a first glance, it turns out that the above scheme is not stable for arbitrary choices
of!t and h. In particular, it is possible to prove that the above discretization is stable
only for

"!t
h2

# 1

2
: (11.20)

A detailed discussion and proof of this property can be found in any advanced
textbook on numerics of PDEs [1–5].

On the other hand, if we apply the implicit EULER method (5.10) to solve
Eq. (11.17) we obtain

TnC1
k " Tn

k

!t
D "

TnC1
k!1 " 2TnC1

k C TnC1
kC1

h2
; (11.21)

which is unconditionally stable. However, Eq. (11.21) is an implicit equation, i.e.
the function values TnC1

kC1 and TnC1
k!1 are required in order to evaluate TnC1

k . Hence,
Eq. (11.21) has to be solved as a system of linear equations. This system may be
written as

ATnC1 D Tn C F ; (11.22)
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For the implicit Euler scheme we get:

which again requires to solve a linear equation system to get all Tk
n+1, which has the 

form
with

and

boundary conditions are incorporated in A and F. This can be solved directly or 
iteratively
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with the vector Tn D .Tn
0 ;T

n
1 ; : : : ;T

n
N/

T and the tridiagonal matrix A:

A D

0

BBBBBB@

: : :
: : :

: : :

! !"t
h2 1C 2!"t

h2 ! !"t
h2

: : :
: : :

: : :

1

CCCCCCA
: (11.23)

The boundary conditions are incorporated in the matrix A and in the vector F. (See
Sects. 9.2 and 9.3.) The linear system of equations (11.22) can be solved numerically
using a direct or an iterative method. Employing an iterative method, imposes a third
index t on the function values of the temperature T which accounts for the iteration
step.

Let us give a brief numerical example. We consider the time-dependent homo-
geneous heat equation (11.16) on a finite interval Œ0;L# together with the boundary
conditions of Sect. 9.1:

T.0/ D T0; T.L/ D TN : (11.24)

In addition we introduce the initial condition

T.x; 0/ D 0; x 2 Œ0;L# : (11.25)

Figure 11.3 presents the time evolution of T.x; t/ at six different time-steps as
it was obtained with the explicit EULER method (11.19). Here we chose T0 D 0,
TN D 2, N D 20, L D 10, ! D 1 as well as "t " 0:5. Note that for this choice of
parameters, the condition (11.20) is fulfilled since h " 1:05 and therefore

!"t
h2

" 0:45 # 1

2
: (11.26)

Figure 11.4 corresponds to Fig. 11.3 but now "t was chosen to be approximately
0:7 and:

!"t
h2

" 0:63 >
1

2
: (11.27)

Thus, the stability criterion was violated and the solutions became unstable. Finally,
Fig. 11.5 presents results obtained with the same parameters as for Fig. 11.4 but with
the help of the implicit EULER method (11.21). Obviously, this procedure provides
a stable solution of the problem.
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Here we solve the heat equation on the interval [0,L] in x-direction with 
boundary condition:

which we also supply with the initial condition

For the explicit Euler scheme with T0=0, TN=2, N=20, L=10, 𝜅=1 and ∆t=0.5
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The boundary conditions are incorporated in the matrix A and in the vector F. (See
Sects. 9.2 and 9.3.) The linear system of equations (11.22) can be solved numerically
using a direct or an iterative method. Employing an iterative method, imposes a third
index t on the function values of the temperature T which accounts for the iteration
step.

Let us give a brief numerical example. We consider the time-dependent homo-
geneous heat equation (11.16) on a finite interval Œ0;L# together with the boundary
conditions of Sect. 9.1:

T.0/ D T0; T.L/ D TN : (11.24)

In addition we introduce the initial condition

T.x; 0/ D 0; x 2 Œ0;L# : (11.25)

Figure 11.3 presents the time evolution of T.x; t/ at six different time-steps as
it was obtained with the explicit EULER method (11.19). Here we chose T0 D 0,
TN D 2, N D 20, L D 10, ! D 1 as well as "t " 0:5. Note that for this choice of
parameters, the condition (11.20) is fulfilled since h " 1:05 and therefore

!"t
h2

" 0:45 # 1

2
: (11.26)

Figure 11.4 corresponds to Fig. 11.3 but now "t was chosen to be approximately
0:7 and:

!"t
h2

" 0:63 >
1

2
: (11.27)

Thus, the stability criterion was violated and the solutions became unstable. Finally,
Fig. 11.5 presents results obtained with the same parameters as for Fig. 11.4 but with
the help of the implicit EULER method (11.21). Obviously, this procedure provides
a stable solution of the problem.
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Fig. 11.3 Solutions of the time-dependent heat equation T.x/ vs x generated by the explicit EULER
method. The stability criterion (11.20) is fulfilled. Results after n D 25, 50, 100, 150, and 300 time
steps are presented. n D 0 represents the initial conditions

Fig. 11.4 Solutions of the time-dependent heat equation T.x/ vs x generated by the explicit EULER
method. The stability criterion (11.20) is not fulfilled and, therefore, the solution is apparently
unstable. Results after n D 25, 50, 100, 150, and 200 time steps are presented. n D 0 represents
the initial conditions
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11.4 The Wave Equation 167

Fig. 11.5 Solutions of the time-dependent heat equation T.x/ vs x generated by the implicit
EULER method. Results after n D 25, 50, 100, 150, and 300 time steps are presented. n D 0
represents the initial conditions

11.4 The Wave Equation

As a model hyperbolic PDE we consider briefly the wave equation [16]. Again, we
regard only the one-dimensional case:

@2

@t2
u.x; t/ D c2

@2

@x2
u.x; t/ : (11.28)

Here, c is the speed at which the wave u.x; t/ propagates. Equation (11.28) is to
be augmented by appropriate boundary and initial conditions. A finite difference
approach similar to the one discussed in Sect. 11.3 will be employed and the
discussion will be restricted to the explicit EULER approximation. Consequently,
Eq. (11.28) is replaced by

un!1
k ! 2unk C unC1k

!t2
D c2

unk!1 ! 2unk C unkC1
h2

: (11.29)

We define the parameter " D c!t
h and solve Eq. (11.29) for unC1k :

unC1k D 2.1! "2/unk ! un!1
k C "2.unk!1 C unkC1/ : (11.30)

∆t=0.7 
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Finally, we use the wave equation as example for a hyperbolic PDE:

Here c is the speed (e.g. of light) at which the wave u(x,t) propagates
We use the same discretization method as before and use the explicit Euler 
scheme:

define

we get
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• In order to solve this, we need to know u(x,t) at two previous time steps, in 
particular for n=0 and n=1

• This explicit Euler scheme is only stable for 
(COURANT-FRIEDRICHS-LEWY or CFL condition)

• CFL holds for hyperbolic problems in general
If the following initial conditions are given:

which are discretized as:

and therefore:

Then we can solve the explicit equations.
One can also use higher order terms in the Taylor series for the discretization for the 
2nd initial condition:

which in combination with the original 
wave equation yields for u1

k:
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We note two important points: (i) The solution for time step n C 1 can only be
determined if the solutions for the time steps n and n ! 1 are known. In particular,
the solutions for n D 0 and n D 1 are required to obtain the solution for n D 2. The
function values for n D 1 can be obtained from the initial conditions which must
include a first order time derivative of u.x; t/ since Eq. (11.28) is a second order
differential equation with respect to time t. (ii) As in the case of parabolic problems,
the explicit EULER approximation (11.30) will not be stable for arbitrary values of
!. It is only stable for

! D c"t
h

" 1 : (11.31)

This condition is referred to as the COURANT-FRIEDRICHS-LEWY or CFL condition
[17, 18]. Its importance stems from the fact, that this condition is not limited to the
wave equation but holds for hyperbolic problems in general. In particular, since the
wave equation can always be viewed as a combination of a right- and a left-going
advection equation, i.e.

@

@t
u.x; t/ D ˙c

@

@x
u.x; t/ ; (11.32)

we gain the very important property that explicit time integrators applied to solve
equations of the type (11.32) are only stable if relation (11.31) is obeyed.

Let us return to the discretization (11.30). Suppose we have initial conditions of
the form

u.x; 0/ D f .x/;
@

@t
u.x; 0/ D g.x/ : (11.33)

They can be approximated by

u0k D fk;
u1k ! u0k
"t

D gk ; (11.34)

and the solution of the second relation in (11.34) yields the desired function values
for n D 1:

u1k D u0k C"tgk : (11.35)

However, in many cases it is beneficial to take higher order terms into account. This
can be achieved by employing a TAYLOR expansion of the form (Chap. 2):

u1k ! u0k
"t

D @

@t
u.x; 0/C "t

2

@2

@t2
u.x; 0/C O."t2/ : (11.36)
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We make now use of the initial conditions (11.33), employ the wave equa-
tion (11.28), and solve for u1k . This gives

u1k D u0k C!tgk C
!t2c2

2
f 00k C O.!t3/ : (11.37)

Here we assumed that the second spatial derivative f 00k D @2

@x2 f .xk/ of the initial
condition f .x/ exists. It may then be approximated by a finite difference approach.

To be specific we consider a vibrating string of length L, which is fixed at its
ends, i.e. u.0; t/ D u.L; t/ D 0. Furthermore, we assume that the string was initially
at rest, i.e.

@

@t
u.x; 0/ D 0 ; (11.38)

and impose initial conditions

u.x; 0/ D

8
<̂

:̂

sin
!
2"x
L

"
x 2

!
L
2
;L
#
;

0 elsewhere.

(11.39)

Figure 11.6 presents results obtained with L D 1; c D 2, N D 100. !t was
chosen in such a way that # D 0:5. On the other hand, Fig. 11.7 presents calculations

Fig. 11.6 Solutions of the wave equation u.x/ vs x generated by the explicit EULER method with
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Here we consider a vibrating string of length L, which is fixed at its ends, i.e. 
u(0,t)=u(L,t)=0. Furthermore, we assume that the string was initially at rest:

plus initial condition

Solved for L=1; c=2, N=100, and ∆t chosen such that 𝜆=0.5 gives:
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We make now use of the initial conditions (11.33), employ the wave equa-
tion (11.28), and solve for u1k . This gives
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2
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Here we assumed that the second spatial derivative f 00k D @2

@x2 f .xk/ of the initial
condition f .x/ exists. It may then be approximated by a finite difference approach.
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Fig. 11.7 Solutions of the wave equation u.x/ vs x generated by the explicit EULER method with
! D 1:01. Results after n D 25, 50, 100, 150, and 200 time steps are presented. n D 0 represents
the initial conditions

performed with the same parameters but now ! was set to 1:01. Thus, the CFL
condition (11.31) was violated and the solutions become unstable.

In general, the numerical solution of hyperbolic PDEs can be very difficult
to obtain since in many cases these equations represent conservation laws. A
very popular class of methods in this context is referred to as finite volume
methods. A detailed discussion of these methods can be found in the book by
R. J. LEVEQUE [6].

11.5 The Time-Dependent SCHRÖDINGER Equation

We already came across the time-dependent SCHRÖDINGER equation in Chap. 10.
It reads

i„ @
@t
" .x; t/ D H" .x; t/ ; (11.40)

where „ is the reduced PLANCK constant, " .x; t/ is the wave function, and H is the
HAMILTON operator. Since the SCHRÖDINGER equation contains a complex coef-
ficient, it cannot be categorized as a PDE of one of the familiar types, i.e. elliptic,
parabolic or hyperbolic. In fact, the SCHRÖDINGER equation shows parabolic as
well as hyperbolic behavior (it is of the form of the diffusion equation but allows
for wave solutions). We discuss here briefly a very elegant method developed to

For 𝜆=1.01 CFL is violated and it fails…

In general, the numerical solution of hyperbolic PDEs can be very difficult to obtain since in 
many cases these equations represent conservation laws. Typically, other methods are used 
(FEM, or finite volume)



The Time-Dependent Schrödinger 
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The time-dependent Schrödinger equation is given by

which is formally solved by

where U(t) is the unitary time-evolution operator. The unitarity preserves the 
norm of the complex wave function 𝜓(x,t).

Here just a brief sketch the main idea.

For more details read Chapters 10 and 11.5 and Appendix D
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11.5 The Time-Dependent SCHRÖDINGER Equation 171

numerically approximate solutions of the time-dependent SCHRÖDINGER equation,
A prominent alternative method, the split operator technique, is briefly explained in
Appendix D.

We note that Eq. (11.40) has the formal solution

! .x; t/ D exp
!

! it
„H

"
! .x; 0/ D U.t/! .x; 0/ ; (11.41)

where we assumed that H is independent of time t. We note that the operator U.t/
on the right hand side of Eq. (11.41) propagates the solution in time. Furthermore, it
is a unitary operator and therefore preserves the norm of the wave-function ! .x; t/.
U.t/ is usually referred to as the unitary time-evolution operator [19].2

We employ relation (11.41) and obtain

! .x; tC"t/ D exp
#
! i.tC"t/

„ H
$
! .x; 0/ D exp

!
! i"t

„ H
"
! .x; t/ : (11.42)

Expanding the exponential in this equation in its series representation and truncating
the series after the second term results in the approximation

! .x; tC"t/ "
!
1 ! i"t

„ H
"
! .x; t/ : (11.43)

Again, we introduce grid-spacing xk D k"x; k 2 N and the correspondingly indexed
functions ! n

k # ! .xk; n"t/ which results in

! nC1
k D

!
1 ! i"t

„ H
"
! n
k : (11.44)

Using Eq. (10.23) for the Hamiltonian in its position space representation in the one-
dimensional case and by approximating the second derivative with the help of the
central difference approximation we arrive at

! nC1
k D ! n

k ! i"t
„

!
! „2
2m

! n
k!1 ! 2! n

k C ! n
kC1

"x2
C Vk!

n
k

"
; (11.45)

where we defined Vk # V.xk/.
The iteration scheme (11.45) resembles the explicit EULER approxima-

tion (11.18) of the heat equation with the difference that we have here an
imaginary coefficient. An implicit procedure for the time-dependent SCHRÖDINGER

2We remember that unitary means that UU# D U#U D 1.
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for a single timestep:

truncating the exponential series gives the relation:

and then the explicit scheme:

Using the conjugate we get the implicit version:

à

Warning: These violate the unitarity, so the wave function will not remain 
normalized, so one needs to normalize after each time step
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equation (11.40) can be obtained by inversion of Eq. (11.42):

! .x; t/ D U".#t/! .x; t C#t/ D exp
!
i#t
„ H

"
! .x; tC#t/ : (11.46)

A series expansion of the exponential results in the desired relation:

! n
k D

!
1C i#t

„ H
"
! nC1
k : (11.47)

We emphasize that the unitarity of the time-evolution operator is of fundamental
importance since it preserves the norm of the wave-function. However, in truncating
the series representation of the unitary time evolution operator U.#t/ we certainly
violate the unitarity of U.#t/. This problem can be remedied by imposing unitarity
of the time evolution as an additional requirement. This requirement can be
incorporated by normalizing the wave-function after each time step.

We demonstrate now that the CRANK-NICOLSON scheme [15] can be applied
successfully to solve Eq. (11.40) numerically for a particular potential. The CRANK-
NICOLSON scheme can be obtained by realizing that

U.#t/ D exp
!

! i#t
„ H

"

D exp
!

! i#t
2„ H

"
exp

!
! i#t
2„ H

"

D exp
!
i#t
2„ H

"!1
exp

!
! i#t
2„ H

"

D
#
U"

!
#t
2

"$!1
U
!
#t
2

"
: (11.48)

Hence, we obtain from Eq. (11.45)

U"

!
#t
2

"
! nC1
k D U

!
#t
2

"
! n
k ; (11.49)

or by expandingU in a series and truncating after the second term

!
1C i#t

2„ H
"
! nC1
k D

!
1 ! i#t

2„ H
"
! n
k : (11.50)
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The Crank-Nicholson scheme can improve the situation, by rewriting

which gives:

and after truncation:

This is then used with the explicit form of the Hamiltonian and rewritten as a 
liner equation system.  This is quite convoluted à see book.
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Start with a Gaussian wave packet:

for a single potential barrier:

or a double barrier:
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5. Set

bn1 D ˝n
1 ; (11.74)

and calculate for k D 2; : : : ;N ! 1

bnk D
bnk!1
ak!1

C˝n
k : (11.75)

6. Calculate for k D N ! 1;N ! 2; : : : ; 1

! nC1
k D 1

ak

!
! nC1
kC1 ! bnk

"
; (11.76)

where the boundary conditions ! n
0 D ! n

N D 0 are to be considered.
7. Set n D nC 1 and go to step 4.

The application of this algorithm is now elucidated with the help of a specific
example, the quantummechanical tunneling effect. The initial condition is described
by a GAUSS wave packet

! .x; 0/ D exp .iqx/ exp
#
! .x ! x0/2

2"2

$
; (11.77)

centered at x D x0 which propagates in positive x-direction with momentum q. This
wave-function is not yet normalized. Furthermore, we regard the single potential
barrier

V1.x/ D
(
V0 x 2 Œa; b# ;
0 elsewhere;

(11.78)

or the double potential barrier

V2.x/ D
(
V0 x 2 Œa; b#[ Œc; d# ;
0 elsewhere:

(11.79)

The scales and parameters are chosen in the following way: L D 500, $x D 1,
$t D 0:1, m D „ D 1, x0 D 200, q D 2, " D 20, V0 D 0:7, a D 250, b D 260, c D
300, and d D 310. Figure 11.8 presents the time evolution of the square modulus of
the resulting wave-function j! .x; n$t/j2 vs x (solid line, left hand scale) at different
time steps n D 500, 1000, and 1500. The time step n D 0 corresponds to the initial
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11.5 The Time-Dependent SCHRÖDINGER Equation 177

Fig. 11.8 Time evolution of the square modulus of the wave-function j .x/j2 vs x (solid line, left
hand scale). The potential V.x/ D V1.x/ is also plotted vs x (dashed line, right hand scale). We
present the results for n D 500, 1000, and 1500 time steps. The graph labeled by n D 0 represents
the initial configuration

condition. The potential V1.x/ vs x is also plotted (dashed line, right hand scale).
Figure 11.9 corresponds to Fig. 11.8 but now the potential is described by V2.x/ and
additional time steps for n D 2000 and 2500 have been added.

In both figures a typical quantum mechanical effect which is referred to as
tunneling can be observed. In particular, there exists a finite probability that the
potential barrier can be crossed, although, from a classical point of view, the
particle’s energy is not sufficient to overcome the barrier. A detailed discussion of
this effect and its technological importance can be found in any standard textbook
on quantum mechanics [19–21].

In conclusion we remark that a very prominent method to solve numerically the
time-dependent SCHRÖDINGER equation is based on the FOURIER transformation.
The numerical implementation of the FOURIER transformation as well as its
application to the SCHRÖDINGER equation is briefly discussed in Appendix D.
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Fig. 11.9 Time evolution of the square modulus of the wave-function j .x/j2 vs x (solid line, left
hand scale). The potential V.x/ D V2.x/ is also plotted vs x (dashed line, right hand scale). We
present the results for n D 500, 1000, 1500, 2000, and 2500 time steps. The graph labeled by
n D 0 represents the initial configuration

Summary

This chapter was about linear PDEs and how to find solutions numerically. The
dominating theme was the application of the various finite difference methods.
The two-dimensional POISSON equation served as an example for an elliptic PDE.
The algorithm to solve this equation developed here was based on the central
difference derivative. Parabolic PDEs were represented by the time-dependent one-
dimensional heat equation. The numerical solution proved to be possible by either
using an explicit or an implicit EULER scheme. For the explicit EULER scheme the
appropriate choice of time and space discretization proved to be essential for the
stability of the algorithm. The one-dimensional wave equation was introduced as
an example of a hyperbolic PDE. The solution was found by employing an explicit
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• Implement the iterative Poisson solver for 
arbitrary charge density 𝜌(x,y)

• Implement a time-dependent heat equation solver 


