00 = 0O = 0O = OO0 ™M= 8 ™~ ™~ 0O ™ ™™ O v~ v~ v

O ™= OO0 ™ O ™ = O = 00 ™ ™ M O ™Y OO0 Y O v~ v~ v~ O

c
I
=)

(qe)

)

OF
LL)
s

(qo)

()
e 2
)

&

Q
®)

C

(b

®X

Q
D_

(D)
£
T

A

Partial Differe‘ntiail .EqUations
» (Schrodinger Equation)

» Poisson Equation
» Wave Equation

L B == B o M o M == B == (= = B 8 o e = s | = e s B == o= T = R o= B o B = O = L o B o B ==

™ = O QN CESINCS S ERTEEETRISI SRS S D D 0 D O ™ O 0O O

Introduction

Here we consider linear partial differential equations (PDEs),
which can be solved using finite difference methods.

Nonlinear PDEs require more advanced methods like finite
element or finite volume methods, or certain approximations.
Examples are Navier-Stokes or time-dependent Ginzburg-Landau
equations.

Main concepts are already introduced. Here examples of elliptic,
parabolic, and hyperbolic equations.

In contrast to the numerical solution of ODEs, there exists no
general recipe for the solution of PDEs.

As for ODEs, the problem is only fully determined when initial
and/or boundary conditions have been defined.

Classification

For a real-valued function u(x, y) of two independent real variables,
x and y, a second-order, linear, constant-coefficient PDE for u(x,y)
takes the form:

Augzy + 2Bugy + Cuyy + Dugy + Euy, + F =0,

If interpreted as polynomial in two variables defines the following

notation:

 Elliptic PDE: B2-AC<0 : Poisson equation, Laplace equation

* Parabolic PDE: B2-AC=0 : heat conduction, particle diffusion, and
pricing of derivative investment instruments

* Hyperbolic PDE: B2-AC>0 : wave equation

The Poisson equation

The Poisson Equation is an example of an elliptic PDE.
Here we consider the force of F(r,t) acting on a charged moving particle in 3D

space, r, and time, t. Its velocity is v and the force is a result of the electric
field, E(r,t), and magnetic field, B(r,t):

F(r,t) =q|E(r,t) + v X B(r,1)]

In the electrostatic case [B=0, E(r,t)=E(r)]: 1
V-E(r) = gp(”)

with charge density p(r,t). Furthermore, with the electrostatic potential ¢(r,t)
we can write:
E(r) = —Vo(r)

@
€0

and as a result: Ap(r) = — Poisson equation

A. Glatz: Computational Physics

For the case p(r,t)=0, the equation is called the Laplace equation.

Here we focus on the 2D static case, and solve the Poisson equation on the domain
2=[0,L,]x[0,L,], where we define the values of ¢(x,y) on the boundary of (2, i.e. 82, by a
function g(x,y) and get the two-dimensional boundary value problem: (&g is absorbed in p)

0° 0°
@QD(X, y) + B—yZQD(X’y) — _Io(x’ y) ’ (X, y) € 2

o(x,y) = gx,y), (x,y) € 052

We discretize x and y coordinates:

x;=xo+1ith, 1=0,1,2,...,n

yj:y0+jhy, j=0,1,2,...,m
where h, and h, are the grid spacings in x and y directions

Poisson equation: discretization

The values of ¢ and p at a grid point (x;y;) are defined by: @i;j = @ (xi,)’j)
pij = P(Xi,yj)

The Poisson equation, discretized by finite differences is then given by

Pi—1j — 20ij + Qit1; L i1~ 20ij + @ij+1

2 2 - TP
or: 1 (hyhy)?
(hY + B3) @ij — > (55 (@i1j + @it1)) + 15 (@ijo1 + @ij1)] = x2y Pij
fori=1,..n, j=1,..m
And the boundary conditions are: Vo = 80, » j=0,1,....,m,

Onj = 8nj > j=0,1,....,m,
®io = &i0 > i=1,2,...,n—1
Qim = im » i=1,2,...,n—1

Solution of the boundary problem

To solve for the unknown values of ¢;;, one usually assigns a single index: @11 — ¢

P12 — ©2

with £=nm Onm —> ©1

And then solves the resulting linear equation system for vector @=(¢4,...,,)" directly

(GE) or using iterative methods (see Appendix C). The boundary values are included in
the matrix.

Here we will use an iterative method, which approximates the solution sequentially and
thus introduces a “time” index for the ¢, which denotes the successively improved
approximations for the real solution.

Iterative MethOdS (see also Appendix C)

* |terative methods formally yield the solution x of a linear system after an
infinite number of steps.

* At each step they require the computation of the residual of the system.

* |n the case of a full matrix, their computational cost is therefore of the order
of n? operations for each iteration, to be compared with an overall cost of the
order of 2/3n3 operations needed by direct methods.

- lterative methods can therefore become competitive with direct methods
provided the number of iterations that are required to converge (within a
prescribed tolerance) is either independent of n or scales sublinearly with
respect to n.

(Some) iterative methods can be parallelized!
Direct methods are typically sequential, and each step depends on
the result of the previous one.

Main concept

The basic idea of iterative methods is to construct a sequence of
vectors x(k) that enjoy the property of convergence:

x = lim x*)
k— oo
where x is the solution of Ax=b
The iteration processes is stopped when ||x(™) — x|| < ¢

with a prescribed tolerance e.
Problem with this conditions: Impractical, since we do not know x.

General scheme:
X(O) — fO (A7 b)a

x(t) = £ (x(™) x(n=1 x(r=m) A b)), for n > m

Definitions

X(O) — fO(A7 b)7

x(t) = (x(™) x(n=1 x(r=m) A b)), for n > m

In this general scheme f; and x(™),..., x%) are given functions and vectors,
respectively.

The number of steps which the current iteration depends on is called the order
of the method.

If the functions f; are independent of the step index i, the method is called
stationary, otherwise it is nonstationary.

Finally, if f. depends linearly on x(, ..., xiM), the method is called linear,
otherwise it is nonlinear.

Linear iterative methods

Here we focus on stationary, linear iterative methods of order one.
e general technique: additive splitting of matrix A of form A=P-N

P and N are two suitable matrices and P is nonsingular
 Piscalled preconditioning matrix or preconditioner

Here we consider an iteration of the form

x(0) given, xFtD =Bx() +f k>0

* Bisannxnsquare matrix called the iteration matrix
* fisavector obtained from the right-hand side b
e Consistent with Ax=b if x=Bx+f or f=(I-B)Alb

Using the above splitting of A, we calculate x for k>0, solving
Px(FtD = Nx(*) + b, k>0
i.e., B=PIN and f=P1b

This scheme can be written as x(k+1) — (k) | p=1.(k)
with the residual r) —p — Ax(®)

We note that:

1. P should be chosen such that it can be easily inverted

2. If P=A and N=0, the iteration would converge in one step

3. The residual is a measure of how good x(k) approximates the real solution x

A. Glatz: Computational Physics

12

Jacobi iteration

If the diagonal entries of A are nonzero, we can single out in each equation the
corresponding unknown on the diagonal and write:

n

1 .

T, — — bz—g CLZ'jCCj s ZZl,...,TL
Qi —

ji
In the Jacobi method x**1) js computed by [x(©) can be an arbitrary initial guess]

1 n
LI?UH_D:— bi—Zaijxg-k) , izl,...,n

! Qi T
j#i
This corresponds to a splitting: P=D, N=D-A=E+F,
* Dis adiagonal matrix having the diagonal elements of A
* Eis the lower triangular matrix with elements: e;=-a; for i>j, 0 else

* Fthe upper triangular matrix: f;=-a;; for i<j, 0 else

A generalization is the over-relaxation method (JOR): xETD — x (k) 4 yD~1p®)

n where wis a
k41 w k k . .
CU§)= 2 bi — g Cbz'jilfg-) + (1 — w):rzg), 1=1,...,n relaxation parameter
Qg —
j=1 0<w< 1
J#i

A. Glatz: Computational Physics 13

Remarks:

A. Glatz: Computational Physics

In the Jacobi method P=D can be easily inverted

Each iteration step required therefore only one matrix multiplication, i.e., Ax(k
Therefore, it can be easily parallelized

The method converges when A is strictly diagonally dominant, i.e., |a;| is larger than
the sum of all other absolute values of the elements in the row

Standard convergence criterion: p(D-IN)<1 (p is the spectral radius, i.e., the largest
absolute value of this eigenvalues)

Jacobi is convergent if A and (2D-A) are symmetric and positive definite

The above convergence criterions are not always necessary for convergence...

14

Jacobi algorithm

Choose an initial guess x© to the solution
k=0
check if convergence is reached, e.g., | |r(k) | | <€
while convergence not reached do
fori:=1 step until ndo
c=0
forj:=1 step until n do
if j #i then
o =0+ a; XK
end if
end (j-loop)
xik+l) = (b; - o)/ a
end (i-loop)
check if convergence is reached
k=k+1
loop (while convergence condition not reached)

Gauss-Seidel iteration

The Gauss-Seidel method differs from the Jacobi method in the fact that at the (k+1)-th step
the available values of x;k*1) are being used to update the solution

1—1 n
ety _ 1| (k1) (N
x, _a—ii {bzzau%‘ Z Aij], 1=1,...,n
j=1 J=i+1
i.e., P=D-E, N=F

The related over-relaxation iteration (SOR) is

1—1 n
$§k+1) _ i |:bi B Zaij$§k+1) _ Z awmy)} (- w)xgk)

a
v j=1 j=i+1

—1
(B D)) <1D ~ E) L)
w

Remarks:

e @GS is monotonically convergent if A is symmetric and positive definite

* @GS converges also for the same criteria as Jacobi

e GSis not parallelizable

* @GS has less memory requirements than Jacobi, since the current iteration can
overwrite elements of the previous approximation

A. Glatz: Computational Physics

Iterative solution of the Poisson
eguation

We denote the approximation for ¢, ;as ¢, ' after t iteration steps and define the
explicit iteration rule:

gD-t—-H _ (hxhy)2 - 1 [2 (gp?—H. + o)
i, 2(h)%+h§) lJ 2(h)26+h§) y i—1, i+1,

+h (905,7_11 +¢; ,j+1)] :

Next, we solve an explicit Poisson equation.

Potential for an electric monopole,
dipole, and quadropole

We use the Dirichlet boundary conditions:

@(0,y)=¢p(L,,y)=0 in x-direction and

¢(x,0)=¢(x,L,)=0 in y-direction
These boundary conditions can be integrated into the iteration rule by
limiting the loop over the interior grid points and leave the boundary values

of ¢ unchanged.
We use L,=L,=10 and n=m=100 and define the domains:

21 = (xg-10.x3] X (yg—10,y2]

2, = (X%,x%-HO] X (%—10’)}%:

23 = (x3-10.x3 | ¥ (y2.y2410]
$24 = (Xg,xgﬂo] X (Y%,y%ﬂo]

on which we define the charge density p

Here: 50 (x,y) € 21U 82, U 25U §24

p1(x,y) =
a) Monopole: 0 elsewhere,

(50 (X,y) € 2, U2,
b) Dipole: 02(x,y) = 4 =50 (x,y) € 25 U 24

| 0 elsewhere,

c) Quadropole: 50 (x,y) € 21 U £24
,03(x,y) = < =50 (x,y) S .Qz U 93

0 elsewhere.

A. Glatz: Computational Physics 19

Convergence & Solutions

We consider the iteration converged at iteration t, when

—1
max (|¢i; — i 1) <n

We choose 1=10". From the solution for ¢(x,y) we can then obtain E.

Solutions:

(b)
(a)

X y)

A. Glatz: Computational Physics

(c)
1o
¢ “ A
4
Q % 2
\ % |
‘ l
\ | J 1)
1 \
(&) 'i) |
- le
2 _’_,»//IF’.'PMJ‘)
R - .
0= A *
20

The time-dependent heat equation

We already discussed the stationary heat equation. Here we use the 1D time-
dependent heat equation as an example of a parabolic PDE

) P 1) = 2T,
a0 T e

With the central difference approximation for the rhs, we write:

9 Tie1 (£) — 2T3(t) + Tis1 (1)
ETk(t) B }1;2 k+1

where h is the grid spacing in x-direction: x,=x,+k*h, k=0,...,N and
correspondingly T,(t)=T(x,,t)

time discretization

For the discretization of the time derivate we can choose any of the
methods we have studied so far. Here we compare: explicit Euler, implicit
Euler, and Crank-Nicolson. The latter is typically the best for parabolic PDEs.
With
t, = to + nAt and T = Ti(t,)
we can write for the explicit Euler scheme:

T — T Ty, —2T¢ + Ty,

Ar " h2

T_, —2T; + T},
2

which is straightforward to solve, since the rhs only depends on the solution
for the previous time step. This method is stable for

K At 1
< _
h? — 2

or TP =T + kAt

implicit Euler

For the implicit Euler scheme we get:

+1 +1 +1 +1

nt-n T -t 4
At h?

which again requires to solve a linear equation system to get all T,"*1, which has the

form

ATt =T" 4+ F with 1" = (T, T",....T%)7
and
A — _Kh_Azt 1 _I_ ZIZZAZ‘ _Khét

boundary conditions are incorporated in A and F. This can be solved directly or
iteratively

Example

Here we solve the heat equation on the interval [O,L] in x-direction with
boundary condition: T0) = T, T(L) = Ty
which we also supply with the initial condition

T(x,0) =0, x € [0, L]

For the explicit Euler scheme with Ty=0, Ty=2, N=20, L=10, k=1 and At=0.5

20

151 n=0 n=25 n=50
x 1ol | | , K At 1
0.5
0.0
20+ r r
n =100 n =150 n =300
15| 1 1
x
= 10
05+
0.0 : : :
0 10 20 10 20 10 20

instability of explicit Euler

If we would have chosen At=0.7 =

2.0

1.5}

T(x)

0.5

0.0
x10'

0.5+

1.0 ¢

n =100

A. Glatz: Computational Physics

10

20

400 |

200 ¢

-200

-400 |

1.0
x10%

0.5 |

0.0

-1.0

n =150

0 10

20

-1.0

x10%
05 ¢

0.0

n =200

10

20

25

compared to implicit Euler

2.0

At=0.7
15t

n=100 n=150 n =300

05+

0.0

A. Glatz: Computational Physics

The wave equation

Finally, we use the wave equation as example for a hyperbolic PDE:

9 9

ﬁu(x, 1) = czﬁu(x, f)

Here c is the speed (e.g. of light) at which the wave u(x,t) propagates
We use the same discretization method as before and use the explicit Euler

scheme:
W = 2w T uy = 2u gy
Af — ¢ h?
define) = cAr
h
we get

A. Glatz: Computational Physics

27

* |n order to solve this, we need to know u(x,t) at two previous time steps, in
particular for n=0 and n=1 At 3

* This explicit Euler scheme is only stablefor A =— <1
(COURANT-FRIEDRICHS-LEWY or CFL condition)

e CFL holds for hyperbolic problems in general

If the following initial conditions are given: 0
; ; u(x,0) = (9, 7u(x0) = g()
which are discretized as: yl — 0
l/lO :fk9 k k = g,
f . At
and therefore: w, = u, + Atgy

Then we can solve the explicit equations.

One can also use higher order terms in the Taylor series for the discretization for the
nd . e« e e, . . 1 _ 0 2
2"% initial condition: ukAtuk _ %M(X’O) LA 0+ o)

2 or?
which in combination with the original = 0 4 Arer +
wave equation yields for u?,: e = Uk 8k

2.2

4+ O(AP)

Example

Here we consider a vibrating string of length L, which is fixed at its ends, i.e.
u(0,t)=u(L,t)=0. Furthermore, we assume that the string was initially at rest:

3u(x, 0) =0

, (271)6) . (L L} ot
e ey oy Smmy{ —— X > ’
plus initial condition u(x.0) = I D)
0 elsewhere.

Solved for L=1; c=2, N=100, and At chosen such that 1=0.5 gives:

10 ¢
n=0
0.5+

n=25 n =250
= 00 v
05 | 1 il
-1.0 | ‘ T ‘ T ‘
1.0 ¢ T ‘ T ‘
n =100 n =150 n =200
05+ //\—

-05 ¢

1.0 | | B ‘ t
0.0 05 1.0 0.5 1.0 05 1.0

... instability

For A=1.01 CFL is violated and it fails...

x10

1.0 1.0t 1.0 ¢t
n=0 n=25 n =50

0.5 0.5}t 05+

—
X

=
>

0.0 \ 0.0 w\ 0.0
0.5 \/ 0.5 | 0.5 |
-1.0 , 1.0} , 1.0} |
1.0 | ' S ' : '
x10’ n =100 @ n=150 10" n = 200

05} 9
X 00 0.0 0.0
>
05} 05t 05}
1.0} , 1.0} , 1.0} ,
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

X X X
In general, the numerical solution of hyperbolic PDEs can be very difficult to obtain since in

many cases these equations represent conservation laws. Typically, other methods are used

(FEM, or finite volume)
A. Glatz: Computational Physics

The Time-Dependent Schrodinger
Equation

The time-dependent Schrodinger equation is given by

0
ih&lp(x, 1) = HY(x,1)

which is formally solved by it
W(x,t) = exp (—£H) VU(x,0) = U@®¥(x,0)

where U(t) is the unitary time-evolution operator. The unitarity preserves the
norm of the complex wave function y(x,t).

Here just a brief sketch the main idea.

For more details read Chapters 10 and 11.5 and Appendix D

A. Glatz: Computational Physics

31

Schrodinger equation:
explicit & implicit

i(t+ Ar) IAt

for a single timestep: (x it AT) = exp [_ a H] W(x,0) = exp (_71{) W (x, f)

truncating the exponential series gives the relation:
IAt
lP(x, r + Al) ~ (1 — 7H) 'J/(X, t)

and then the explicit scheme:

IAt W2 W 2y gt
wn—l—l — lpn . . k—1 k k+1 V. wn
¢ “oh (2m Ax? TV
Using the conjugate we get the implicit version:
iAt ;
W(x,t) = UT(AZ)‘P(X, t+ At) = exp (7H) W(x,t+ Ar) S Y= (1 + %H) 'PI?-H

Warning: These violate the unitarity, so the wave function will not remain
normalized, so one needs to normalize after each time step

Crank-Nicholson

The Crank-Nicholson scheme can improve the situation, by rewriting

U(Ar) = exp (—%H)

iAtH iAtH
= X _— X _—
P\ 7% P\ ™%

H

which gives: ot (ﬂ) ot =y (ﬁ) oy

and after truncation: iAt iAt
(1 + EH) gt = (1 - EH) P!

This is then used with the explicit form of the Hamiltonian and rewritten as a
liner equation system. This is quite convoluted = see book.

Example

. . . o2
Start with a Gaussian wave packet: W(x.0) = exp (igx) exp [_ (x2);0)]
o

. _ . Vo X € la,b],
for a single potential barrier: Vilx) =

0 elsewhere,
or a double barrier: Vo x € [a,b] U [c,d]
Va(x) = {

0 elsewhere.

tunneling through single barrier

0.8

0.6

(A

0.4

0.2

0.0

0.0

n =500

100

0.08

0.8

0.06

0.6

0.02

0.00

0.0

0.03
0.02 r

()

0.01

0.2

0.00

0.0

n =1000

0.04

0.03 r

0.01 r

0.00

0.03 -
0.02 -

0.01 -

000

300 400 500

200

200 300 400 500

100

35

A. Glatz: Computational Physics

tunneling through double barrier

(A
© © < N o
o o o o o
o
o
[Te] 4
1
c
© [(e} <t N o
=} =} o o =}
o o o o o
00|
Q
o
o |
1
c
< [s2] N -~ o
o o o o =}
o o o o o

200 300 400 500

100

200 300 400 500

100

(A
© © < o~ o
<} S <} o IS}
. . .
o
3
=
[y
o
o
D]
=
Il
c
o o) o 0 o
I - - = S
=} o o S S
o o o o o
()
© ©
<} [}
.
[
o
=}
S
2]
1]
c
. . .
© © < o~ o
s} S S =} S
= =] =] =] =]
G|

200 300 400 500

100

200 300 400 500

100

0.020

0.8

0.015
0.010
0.005

1 0.6
0
102

0.000

0.0

ly(x)[?

n = 2000

0.020

0.015 r
0.010 r
0.005 r

2100

500

400

200

100

300 400 500

200

36

A. Glatz: Computational Physics

This week’s/Next homework task

* Implement the iterative Poisson solver for
arbitrary charge density p(x,y)
 Implement a time-dependent heat equation solver

