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Introduction

* The Ising model describes a ferromagnetic (or antiferromagnetic)
material.

* A ferromagnet (FM) has a finite magnetization M without applied
magnetic field below the Curie temperature T..

* AtT.the FM has a second order phase transition to the
paramagnetic state at T>T.. M goes to zero at T, and serves as an
order parameter.

The microscopic origin of this macroscopic M A
phenomenon is based on the exchange
interaction between identical particles, the atoms
or molecules forming the material. The exchange
interaction is a purely quantum-mechanical

effect which is a consequence of the COULOMB
interaction in combination with the PAULI

exclusion principle.
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Spins in a solid — Heisenberg model

Given two atoms or molecules with spins S; and S,, where S;, S, € R3, the
exchange interaction energy is of the form: @ (b)

E =S, -5, T
with exchange constant J. The ground state for a T T T ] | T T l T l | l ] l
system of spins depends on the sign of ] 2
For the antiferromagnetic case (J>0) the transition T T T T | T T
temperature T, is called Neel temperature. T l T l T l T

: : : : : . J<0 1>0
For atoms (spins) on a cubic lattice with lattice points x,,

we can write the Hamilton function

Heisenberg model

where J,,=0 and J,, 2 J, »=J,_, to account for translation invariance.
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Ising model

In the Heisenberg model the spin directions are arbitrary. In the Ising model one
restricts the direction to one direction, typically the z-direction. Thus the

guantum mechanical description (spin quantization) of the (general) Ising model
is given by the Hamiltonian

where S%, are the spin operators in z-direction.
For spin % particles, the eigenvalues of the spin operator are g,=%1 (in units of

h/2) and we write |
H=—— E Jo_woror — h E :g “classical”
3 =0/ 0¢0¢ {

Ising model

where the factor A2/4 is absorbed in the coupling constants and h is an external
magnetic field in z-direction.

A. Glatz: Computational Physics



usually the interaction is limited to nearest neighbors (n.n.) such that for J,

J if £, n.n.

Jo—v = ,
0 otherwise.

summation over n.n.
For an infinite system, this model can be solved analytically in 1D (Ising’s
solution) and 2D (Onsager solution)

The magnetization of the system in a certain configuration is given by
M(C )=(0,).

A. Glatz: Computational Physics



Statistical Physics and definitions

The Boltzmann distribution is given by:  p(%) = ZL exp [_E(%)]

N kBT

where E(C) is the energy of a spin configuration C

The partition function is defined as E E(cg)i

from which we can derive the average energy

and magnetization

using these we can define x = E;ih (M) susceptibility
cp = i (E) specific heat
oT

A. Glatz: Computational Physics



Final expressions are:

cn = —T2Zp(C€) [E*(€) — E(©) (E)]

- kB1T2 ((Ez) - <E)2)

1
= T2 var (E) .

X = Zp(%) [4*(€) — (%) (M)]

kB T

= or (07 - 0?)

1
= kB—Tvar (M) .

A. Glatz: Computational Physics



1D solution

(see book for details)
The partition function in 1D for N spins can be calculated as
Iy = A +A)
. J h
with Al = exp (kB—T) cosh (kB—T)

+./e 2/ sinh? h +e 2/
xp | — X
P\ieT kel P\ " reT

The expectation value for the energy per particle is given by

kgT? 0
g) = InZ
&) =~y g7 &
In the thermodynamic limit N—>eoo: . l — lim lln (A + 1Y) =,

N—oo N N—oo N
In(Zy) /

and for h=0: - l ‘/_/ smooth function of T for T> 0
L s oiscet = no phase transition in the

one dimensional Ising model

A. Glatz: Computational Physics



2D Onsager solution

For h=0 one observes a second order phase transition with transition temperature
defined by:

2J
: 2 2]
¢, and y diverge at T, 2 tanh (kBTC) =1 kT, = e (Lrva) 2.269J

and for the energy per particle

(¢) = —J coth (ki—JT) {1 + %Kl &) [2 tanh? (ki—JT) — 1]}

where K;(€) is the complete elliptic integral with . 2 sinh (é—JT)
cosh? (ki—JT)
and magnetization per particle N PR B
(14+z)%(1 — 627+ 77)% for T < Tp
. 2J m) = v1-2
with z=exp| ——
kgT

(i o s - BY] )
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Phase transitions

Ehrenfest classification of Phase Transition:

* First-order phase transitions exhibit a discontinuity in the first
derivative of the chemical potential with a thermodynamic
variable. Such as solid/liquid/gas transitions.

* Second-order phase transitions (also called continuous phase
transition) have a discontinuity or divergence in a second
derivative of the chemical potential with thermodynamic

variables.

¢, and x are second derivatives

A. Glatz: Computational Physics
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Critical exponents

T-T. ,
Reduced temperature: 7 = 7 ‘.
¢ I g
u I
. def . log|f(7)| Bk | :
Critical exponent: &k = lim £ I < g
7—0 log|7]| 5 AL
5 || An
g & F
~a E i i f
Specific heat ( x ‘7; (T<T.) i £
Magnetization M o« |T T 5 T
_ Reduced temperature
Y Critical behavior of the order parameter an the
Magnetic susceptibility X T correlation length. The order parameter vanishes with
-V the power 3 of the reduced temperature t as the critical

point is approached along the line of phase coexistance.
The correlation length diverges with the power v of the
reduced temperature.

Correlation length 5 X ‘T

The exponents display critical point universality (don’t depend on details of the model). This explains the
success of the Ising model in providing a quantitative description of real magnets.

A. Glatz: Computational Physics



Ising values

o 0 (log div) 0.110(1)

6 1/8 0.3265(3) 1/2
V 7/4 1.2372(5) 1
o) 15 4.789(2) 3
n 1/4 0.0364(5)

Vv 1 0.6301(4) 1/2
w 2 0.84(4)

At T=T.: HxcM?, <o (0)o(r)>oc rz-dn

A. Glatz: Computational Physics
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Numerics

Here we concentrate on the 2D case of the Ising model and place the spins on a
square lattice {2 with coordinates (x,y;), i,j,=1,...,N.

III

with o, .=+1 —i.e. we treat these as “classical” spins. We consider only n.n.

L=

interaction.

Task: calculate numerically observables like the expectation value of the energy
or of the magnetization, which will then be compared with analytic results.

A. Glatz: Computational Physics
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Problem: We cannot sample all possible configurations of the system which
grow exponentially with grid points, e.g. for N=100 we have 2N*N=2100007 (3000
possible arrangements of spins.

Solution: Use Monte-Carlo methods — here the Metropolis algorithm

For example, using M (not magnetization here) configurations, we can get an
approximation for the energy expectation value

var (B) var(E)=(E2)-(E)?

1 < )

if these M configurations follow the Boltzmann distribution (this basically

means that we neglect most configurations which have exponentially small
probability to be physical.)




Metropolis rejection for the Ising
model

After generation a new trial configuration C* from the current, valid
configuration C, we accept the new one with the following probability

p(‘ﬁ’)1 _ min dex _E(@E)-E(@)] |
1) = p o1

Pr(A|¢", ¢) = min

C'is generated by just flipping one spin on the grid. Since we only consider n.n.
interaction, the energy difference of the two configurations is given by the
simple expression:

AE;; = 2J01; (0141, + 0i—1j + Oij—1 + Oiy41) + 2hoy,

A. Glatz: Computational Physics 15



Practical considerations

We consider a two-dimensional NxN square lattice with periodic boundary
conditions in order to reduce finite volume effects

ON+1j = O1 and OiN+1 = Oi ]

Do not use the n.n. matrix suggested in the book — this is usually very
inefficient (requires memory access). N.n. coordinates are easy to calculate on-
the-fly

We need a good PRNG to choose random sites

Initial configuration: the Metropolis algorithm produces configurations which
become independent of the initial state and follow the Boltzmann distribution
—> start with random spins

Run the algorithm for “a while” to thermalize the system — disregard these
initial trial movements. How to determine “a while”? One should check if
thermal equilibrium has been reached by analyzing the observable under
consideration as function of time, then determine when initial biases are gone.
In this case the observable reaches some saturation value as a function of the
number of measurements.



* To check if saturation is reached, one should start with two different initial
conditions and check when the observables will converge
* typically we study temperature dependencies and change the temperature

once the equilibrium has been reached: either hot (random intial spins) or cold
(ordered initial spins) start



Running the code

The Metropolis algorithm for the Ising model is executed in the following steps:

1.
2.

Choose an initial configuration C,

we go through all lattice sites (either systematically/sequentially, by random
permutation, or completely random) and flip the spin: g, =2 -0, Calculate
AE; ; — one complete loop through all site is called a sweep. MC simulations
typically need many sweeps

Accept the new configuration according to

AE;;
Pr(A|¢", ;) = min |:exp (— P ]f) , 1}
B

4. go to next lattice site, repeat 2

Measurement:

1. do the above till thermal equilibrium is reached

2. start calculation of observables and average over N trial configurations,
when accepted

3. (optional, repeat) change external parameter (T, h), re-equilibrate (typically

shorter than the initial equilibration), and then average observable



h=0, J=0.5

N=50,

~10°> measurements
(32 sweeps)
kgT=3>ksT. >
paramagnetic state,
(m)=0

A. Glatz: Computational Physics

Some results

0.0

- - - hot

(b)

cold

M x 10* M x 10*

1.0

0.5

<m>

0.0

— 32 sweeps are not long enough to equilibrate the energy
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temperature dependence

(a)

<&>

| " &Mmm 2 . 0.0

1.0

(b) |

1 0.5

(d)— 75
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<|m|>
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with error bars
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domains near T_
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next Homework

Implement Monte-Carlo solver for the Ising model

equilibrate (> 500 sweeps), set J=0.5
calculate magnetization, average energy,
susceptibility and heat capacity across the
phase transition

do the above to decreasing and increasing
temperature for h=0

calculate error bars

choose temperature steps smaller near T,
do the above for N=5,20,50,100 or even larger
(optional)

chose different J and h#0 (optional)




