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• The Ising model describes a ferromagnetic (or antiferromagnetic) 
material.

• A ferromagnet (FM) has a finite magnetization M without applied 
magnetic field below the Curie temperature Tc.

• At Tc the FM has a second order phase transition to the 
paramagnetic state at T>Tc. M goes to zero at Tc and serves as an 
order parameter.
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Fig. 15.1 Schematic
illustration of the
magnetization M as a
function of temperature T in a
ferromagnetic material

Fig. 15.2 Schematic
illustration of the
spin-orientation in a (a)
ferromagnetic (J < 0) or (b)
antiferromagnetic (J > 0)
two-dimensional crystal

with the exchange constant J. The magnitude of J as well as its sign are determined
by overlap integrals which include the COULOMB interaction. If J < 0 a parallel
orientation of the spins is energetically favorable and ferromagnetism arises if T <
TC. On the other hand, if J > 0, an antiparallel orientation is established as long as
the temperature does not exceed the NÉEL temperature TN . However, in both cases
the system undergoes a phase transition to a paramagnetic state if the temperature
T exceeds the CURIE temperature (ferromagnetic case) or the NÉEL temperature
(antiferromagnetic case). A schematic illustration of ferro- and antiferromagnetism
for a two-dimensional crystal is illustrated in Fig. 15.2. We summarize the different
scenarios:

8
ˆ̂<

ˆ̂:

J < 0 ferromagnetic;

J > 0 antiferromagnetic;

J D 0 non-interacting:

We concentrate on a cubic crystal lattice in which the atoms are localized at
positions x`. The spin of atom ` will be denoted by S` 2 R3 and the exchange
parameter between atom ` and atom `0 by J``0 . Furthermore, we consider the
ferromagnetic case with J``0 < 0. The HAMILTON function [9–11] is of the form

H D 1

2

X

``0
J``0S` ! S`0 D

1

2

X

``0
J`!`0S` ! S`0 : (15.2)

Here J``0 was replaced by J`!`0 D J`0!` to account for translational invariance.
Moreover, we define that J`` D 0, otherwise we would have to exclude the

The microscopic origin of this macroscopic
phenomenon is based on the exchange
interaction between identical particles, the atoms
or molecules forming the material. The exchange
interaction is a purely quantum-mechanical
effect which is a consequence of the COULOMB
interaction in combination with the PAULI
exclusion principle.
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Given two atoms or molecules with spins S1 and S2, where S1, S2 ∈ ℝ3, the 
exchange interaction energy is of the form:

with exchange constant J. The ground state for a
system of spins depends on the sign of J à
For the antiferromagnetic case (J>0) the transition
temperature Tc is called Neel temperature.

For atoms (spins) on a cubic lattice with lattice points xℓ,
we can write the Hamilton function

where Jℓℓ=0 and Jℓℓ’ à Jℓ-ℓ’= Jℓ’-ℓ to account for translation invariance.

Chapter 15
The ISING Model

15.1 The Model

Ferromagneticmaterials are materials which develop a non-vanishingmagnetization
M even in the absence of an external magnetic field B. It is an experimental obser-
vation, that this magnetization decreases smoothly with increasing temperature, and
vanishes above the critical temperature TC, referred to as CURIE temperature [1].
Above this temperature the magnetization is zero and the material is no longer
ferromagnetic but paramagnetic. This typical situation is illustrated in Fig. 15.1 and
it is the signature of a phase transition. In a theoretical description of this transition
the magnetizationM serves as an order parameter.1 At T D TC the system exhibits
a second order phase transition: The magnetization is not differentiable with respect
to T; it is, however, continuous.

The microscopic origin of this macroscopic phenomenon is based on the
exchange interaction between identical particles, the atoms or molecules forming
the material. The exchange interaction is a purely quantum-mechanical effect which
is a consequence of the COULOMB interaction in combination with the PAULI

exclusion principle.2 For more detailed information please consult Refs. [2–8].
Given two atoms or molecules with spins S1 and S2, where S1; S2 2 R3, the

exchange interaction energy is of the form3

E D JS1 ! S2 ; (15.1)

1For a short introduction to phase transitions in general please consult Appendix F.
2The statement that magnetism is a purely quantum-mechanical phenomenon that cannot explained
in classical terms is known as the BOHR-VAN LEEUWEN theorem [3, 4].
3In this discussion we regard the spin as a classical quantity. In the quantum mechanic case one
has to replace the vectors by vector operators Si.
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In the Heisenberg model the spin directions are arbitrary. In the Ising model one 
restricts the direction to one direction, typically the z-direction. Thus the 
quantum mechanical description (spin quantization) of the (general) Ising model 
is given by the Hamiltonian

where Sz
ℓ are the spin operators in z-direction.

For spin ½ particles, the eigenvalues of the spin operator are 𝜎ℓ=±1 (in units of 
ℏ/2) and we write

where the factor ℏ2/4 is absorbed in the coupling constants and h is an external 
magnetic field in z-direction.
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contributions ` D `0 from the above sum. The HAMILTON function (15.2) is genuine
to the HEISENBERG model [1]. We note that in this model there is no distinguished
direction of spin orientation and, consequently, the HAMILTON function is invariant
under a rotation of all spin vectors S`. The actual spin orientation may be determined
by an external magnetic field or by an anisotropy of the crystal lattice. Furthermore,
the restriction of the spin orientation to the positive or negative z-direction is the
characteristic of the ISING model.

In a quantum mechanical description the HAMILTON operator (Hamiltonian) of
the ISING model is defined by

H D 1

2

X

``0
J`!`0Sz`S

z
`0 ; (15.3)

where Sz` are the spin operators in z-direction. If spin 1=2 particles are described by
this Hamiltonian, the spin operators Sz` are replaced by .„=2/! z

` with !
z
` the PAULI

matrix and „ the reduced PLANCK’s constant. Furthermore, we redefine J0`!`0 D
!.„2=4/J`!`0 , J0`!`0 > 0, and represent the Hamiltonian in the basis of eigenstates
of the operators ! z

` . These eigenstates have eigenvalues !` D ˙1 which correspond
to spin up and spin down states, respectively. We obtain in this representation

H D !1
2

X

``0
J`!`0!`!`0 ! h

X

`

!` ; (15.4)

where we dropped the prime on the exchange parameter J`!`0 for the sake of a more
compact notation. We added, furthermore, a term which accounts for the possible
coupling of the spins to an external magnetic field,4 where h stands for the reduced
field h D !"BgB=2.5

There are some special cases in which the ISING model can be solved analytically
[12, 13]. For instance, one can solve the general case described by Eq. (15.4) with
the help of the mean field approximation: The contribution h` acting on site `

h` D hC
X

`0
J`!`0!`0 ; (15.5)

is replaced by its mean value

hh`i D hC QJm ; (15.6)

4We note in passing that the Hamiltonian (15.4) is invariant under a spin flip of all spins if h D 0
(Z2 symmetry). This symmetry is broken if h ¤ 0, i.e. the spins align with the external field h.
5We note thatH / " "Bwhere B is the magnetic field and " is the magnetic moment. Furthermore,
" can be expressed as " D !"BgS=„ D !"Bg!=2, where "B is the BOHR magneton, g is the
LANDÉ g-factor and ! is the vector of PAULI matrices. The sign is convention.
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usually the interaction is limited to nearest neighbors (n.n.) such that for Jℓ-ℓ’:

For an infinite system, this model can be solved analytically in 1D (Ising’s
solution) and 2D (Onsager solution)

The magnetization of the system in a certain configuration is given by 
ℳ(𝒞 )=⟨𝜎ℓ⟩.

228 15 The ISING Model

where m D h!`i and QJ D P
` J`. (The term QJm is commonly referred to as the

molecular field.) With the help of this ansatz it is, for instance, possible to reproduce
the experimentally observed CURIE-WEISS – law of ferromagnetic materials: The
temperature dependence of the magnetic susceptibility " for T > TC can be
described by:

" / 1

T ! TC
: (15.7)

Another very interesting special case of the general model (15.4) is the restriction
to nearest neighbor (n. n.) interaction with the assumption that the interaction
between non-nearest neighbor spins is negligible. One step further goes the
approximation that J`!`0 " J for nearest neighbors. Hence, we have

J`!`0 D
(
J if `; `0 n. n. ;

0 otherwise:
(15.8)

In this case Eq. (15.4) is rewritten as

H D !J
2

X

h``0i
!`!`0 ! h

X

`

!` ; (15.9)

where
P

h``0i denotes the sum over all nearest neighbors. This model can be solved
analytically in one and two dimensions if the system is assumed to be spatially
unlimited. The solution in one dimension was published by E. ISING [14]. The
solution in two dimensions, which is much more involved, was reported by L.
ONSAGER [15].

We briefly discuss ISING’s solution in one dimension. The Hamiltonian (15.9)
for N-particles aligned in a one-dimensional chain is rewritten as

H D !J
NX

`D1
!`!`C1 ! h

NX

`D1
!` ; (15.10)

where we applied periodic boundary conditions, !NC1 D !1, and the factor 1=2was
absorbed into J. Let us now briefly elaborate on the kind of observables we would
like to describe within this model. (We note in passing that the following discussion
is not restricted to the one-dimensional case.) Given a particular spin configuration
C D f!ig, we assume that the probability of finding the system in this configuration
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summation over n.n.
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the heat capacity, ch, can be derived. The following relations hold:

! D @

@h
hMi and ch D

@

@T
hEi : (15.16)

Equation (15.13) is applied to rewrite the expression for the heat capacity:

ch D
X

C

E.C /
@

@T
p.C / : (15.17)

Here we made use of the fact that E.C / is independent of temperature T. We
evaluate, furthermore, the derivative of p.C / with respect to temperature T:

@

@T
p.C / D @

@T

2

4
exp

!
!E.C /

kBT

"

ZN

3

5

D p.C /
kBT2

ŒE.C / ! hEi" : (15.18)

This is inserted into Eq. (15.17) and results in a final expression for the heat capacity:

ch D
1

kB
T2
X

C

p.C /
#
E2.C / ! E.C / hEi

$

D 1

kBT2

!˝
E2
˛
! hEi2

"

D 1

kBT2
var .E/ : (15.19)

This result justifies why the heat capacity is referred to as a fluctuation quantity.
We determine now, following the same ideas, the magnetic susceptibility using

relation (15.14):

! D
X

C

M .C /
@

@h
p.C / : (15.20)

We note that

@

@h
E.C / D !M .C / ; (15.21)
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is given by the BOLTZMANN distribution p.C /6:

p.C / D 1

ZN
exp

!
!E.C /

kBT

"
: (15.11)

Here, T is the temperature and kB is BOLTZMANN’s constant. The energy E.C /
associated with configuration C is given by Eq. (15.10). Please note that now,
obviously, we have to treat the model in the classical sense, although we consider
spin degrees of freedom. The partition function ZN is given by the sum over all
possible configurations C [3, 4, 16]:

ZN D
X

C

exp
!
!E.C /

kBT

"
: (15.12)

In general, the task of solving the ISING problem is a problem of how to evaluate the
sum (15.12). This is certainly not trivial since, for instance, in the one dimensional
case with N D 100 grid-points one has 2N D 2100 " 1:3 # 1030 different
configurationsC . On the other hand, once ZN has been determinedmore information
about the properties of the system can be derived [2, 12, 13]. For instance, the
expectation value of the energy7 is given by

hEi D
X

C

p.C /E.C / D kBT2
@

@T
lnZN ; (15.13)

and the expectation value of the magnetization follows from

hMi D
X

C

p.C /M .C / D kBT
@

@h
lnZN ; (15.14)

where we defined the magnetizationM .C / of a configuration C via:

M .C / D
 
X

`

!`

!

C

: (15.15)

The term
P

` !` was placed within parenthesis indexed by C to emphasize
its dependence on the particular configuration C . From the observables (15.13)
and (15.14) the fluctuation quantities, namely, the magnetic susceptibility, ", and

6In particular we assume ergodicity of the system as will be explained in Chap. 16.
7hEi is also referred to as internal energy U.
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6In particular we assume ergodicity of the system as will be explained in Chap. 16.
7hEi is also referred to as internal energy U.

The Boltzmann distribution is given by:

where E(𝒞) is the energy of a spin configuration 𝒞
The partition function is defined as

from which we can derive the average energy 

and magnetization

using these we can define susceptibility

specific heat
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Final expressions are:

15.1 The Model 231

and obtain:

@

@h
p.C / D @

@h

2

4
exp

!
!E.C /

kBT

"

ZN

3

5

D p.C /
kBT

ŒM .C / ! hMi! : (15.22)

This results in a final expression for the magnetic susceptibility " which relates it to
the variance of the magnetizationM:

" D 1

kBT

X

C

p.C /
#
M 2.C / ! M .C / hMi

$

D 1

kBT

!˝
M2
˛
! hMi2

"

D 1

kBT
var .M/ : (15.23)

After this excursion, we return to the analytic treatment of the infinite one-
dimensional ISING model with nearest neighbor interaction, Eq. (15.10). If it were
possible to evaluate the partition function ZN , the required observables would be
directly accessible via the above relations. In most cases this task is not analytically
feasible. Nevertheless, in our particular case it appears to be possible because we
recognize that we can actually evaluate Eq. (15.12) explicitly by keeping in mind
Eq. (15.9):

ZN D
X

C

p.C /

D
X

C

exp

"
1

kBT

 
J

NX

`D1
#`#`C1 C h

NX

`D1
#`

!#

D
X

C

NY

`D1
exp

%
J

kBT
#`#`C1 C

h
2kBT

.#` C #`C1/
&
: (15.24)

In the last step the sum over #` was replaced by an alternative sum

NX

`D1
#` D

1

2

NX

`D1
.#` C #`C1/ ; (15.25)
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the heat capacity, ch, can be derived. The following relations hold:

! D @

@h
hMi and ch D

@

@T
hEi : (15.16)

Equation (15.13) is applied to rewrite the expression for the heat capacity:

ch D
X

C

E.C /
@

@T
p.C / : (15.17)

Here we made use of the fact that E.C / is independent of temperature T. We
evaluate, furthermore, the derivative of p.C / with respect to temperature T:

@

@T
p.C / D @

@T

2

4
exp

!
!E.C /

kBT

"

ZN

3

5

D p.C /
kBT2

ŒE.C / ! hEi" : (15.18)

This is inserted into Eq. (15.17) and results in a final expression for the heat capacity:

ch D
1

kB
T2
X

C

p.C /
#
E2.C / ! E.C / hEi

$

D 1

kBT2

!˝
E2
˛
! hEi2

"

D 1

kBT2
var .E/ : (15.19)

This result justifies why the heat capacity is referred to as a fluctuation quantity.
We determine now, following the same ideas, the magnetic susceptibility using

relation (15.14):

! D
X

C

M .C /
@

@h
p.C / : (15.20)

We note that

@

@h
E.C / D !M .C / ; (15.21)
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(see book for details)

The partition function in 1D  for N spins can be calculated as

with

The expectation value for the energy per particle is given by

In the thermodynamic limit N→∞:

and for h=0:

15.1 The Model 233

It is an easy task to determine the eigenvalues of this matrix [17, 18]. The
characteristic polynomial

det

0

@
exp

!
JCh
kBT

"
! ! exp

!
! J

kBT

"

exp
!
! J

kBT

"
exp

!
J!h
kBT

"
! !

1

A (15.31)

is of the form
#
exp

$
J C h
kBT

%
! !

& #
exp

$
J ! h
kBT

%
! !

&
! exp

$
! 2J
kBT

%

D !2 ! 2! exp
$

J
kBT

%
cosh

$
h

kBT

%
C 2 sinh

$
2J
kBT

%

ŠD 0 ; (15.32)

which is easily solved. We get for the two eigenvalues !1;2

!1;2 D exp
$

J
kBT

%
cosh

$
h

kBT

%

˙
s

exp
$
2J
kBT

%
sinh2

$
h

kBT

%
C exp

$
! 2J
kBT

%
; (15.33)

and note that !1 " !2 for all temperatures T " 0.
We now make use of the fact that the trace is invariant under a basis transforma-

tion # . Hence we can express the transfer matrix in a basis in which it is diagonal
and set

T 0 D # T # !1 D
$
!1 0

0 !2

%
; (15.34)

which immediately results in:

ZN D !N1 C !N2 : (15.35)

Everything required to calculate the expectation value of energy per particle h"i

h"i D kBT2

N
@

@T
lnZN ; (15.36)
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in the thermodynamic limit N ! 1 is now in place and, thus, we can investigate
the possibility of a phase transition. First, we consider the limit

lim
N!1

1

N
ZN D lim

N!1
1

N
ln
!
!N1 C !N2

"
D ln!1 ; (15.37)

since !1 ! !2 for all T ! 0.8

If there is no external field, i.e. h D 0, we have

lim
N!1

1

N
ZN D ln

#
2 cosh

$
J

kBT

%&
; (15.38)

which is a smooth function of T for T ! 0. Consequently, we do not observe a
phase transition in the one dimensional ISING model. Even more information about
the system can be provided by the spin correlation function h"`"`0i

h"`"`0i D
X

C

p.C /"`"`0 : (15.39)

A basic, however, tedious calculation shows that in the thermodynamic limit it is
described by

h"`"`0i D
$
!2

!1

%`!`0
; (15.40)

with the result that the spin correlation decreases with increasing distance ` " `0

since !2 < !1 for T > 0.
We move on and briefly sketch the solution of the infinite two-dimensional ISING

model according to L. ONSAGER [15]. The HAMILTON function (15.10) changes
into:

H D "J
X

``0
"`;`0 ."`C1;`0 C "`!1;`0 C "`;`0!1 C "`;`0C1/" h

X

`;`0
"`;`0 : (15.41)

8We transform

!N1 C !N2 D !N1

"

1C
$
!2

!1

%N
#

;

and use that
$
!2

!1

%N

! 0; as N ! 1 :

ln(ZN)

X
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For h=0 one observes a second order phase transition with transition temperature 
defined by:

and for the energy per particle

where K1(𝜉) is the complete elliptic integral with

and magnetization per particle

with

15.1 The Model 235

The strategy developed for the one-dimensional case can again be applied: The
system is treated as a classical system with spin degrees of freedom. The HAMILTON

function (15.41) is inserted into the expression, Eq. (15.12) for the partition function
ZN . With the help of the correct basis ZN can be described by the trace over a product
of transfer matrices. However, in this case the transfer matrix T is of dimension
2N!2N rather than 2!2. It is quite obvious that the search for the largest eigenvalue
for arbitrary values of N is not a trivial task. Therefore, we limit our discussion to a
summary of the most important results for the particular case h D 0.

In the two-dimensional case a phase transition is indeed observed: The magnetic
susceptibility becomes singular at a particular temperature TC. This temperature is
given as the solution of equation:

2 tanh2
!
2J

kBTC

"
D 1 : (15.42)

The expectation value of the energy per particle takes on the form

h"i D "J coth
!
2J
kBT

"#
1C 2

!
K1."/

$
2 tanh2

!
2J
kBT

"
" 1

%&
; (15.43)

where K1."/ is the complete elliptic integral of the first kind [see Eq. (1.14)] with
the argument:

" D
2 sinh

'
2J
kBT

(

cosh2
'
2J
kBT

( : (15.44)

The magnetization per particle hmi is proved to be determined from

hmi D

8
<̂

:̂

.1C z2/
1
4 .1 " 6z2 C z4/

1
8

p
1 " z2

for T < TC ;

0 for T > TC ;

(15.45)

with

z D exp
!

" 2J
kBT

"
:

Equation (15.45) clearly describes a phase transition at T D TC .
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Equation (15.45) clearly describes a phase transition at T D TC . T<Tc

ch and 𝜒 diverge at Tc
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Ehrenfest classification of Phase Transition:
• First-order phase transitions exhibit a discontinuity in the first 

derivative of the chemical potential with a thermodynamic 
variable. Such as solid/liquid/gas transitions.  

• Second-order phase transitions (also called continuous phase 
transition) have a discontinuity or divergence in a second 
derivative of the chemical potential with thermodynamic 
variables. 

ch and Â are second derivatives
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Reduced temperature: τ ≡
T −TC
TC

Specific heat

Magnetization

Magnetic susceptibility

Correlation length

C∝ τ
−α

M ∝ τ
β

χ ∝ τ
−γ

ξ ∝ τ
−ν

The exponents display critical point universality (don’t depend on details of the model). This explains the 
success of the Ising model in providing a quantitative description of real magnets. 

Critical exponent:

(T<Tc)
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d 2 3 4
α 0 (log div) 0.110(1) 0

β 1/8 0.3265(3) 1/2

γ 7/4 1.2372(5) 1

δ 15 4.789(2) 3

η 1/4 0.0364(5)

ν 1 0.6301(4) 1/2

ω 2 0.84(4)

At T=Tc: H/M±,  <¾(0)¾(r)>/ r2-d-´
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Here we concentrate on the 2D case of the Ising model and place the spins on a 
square lattice 𝛺 with coordinates (xi,yj), i,j,=1,…,N.

with 𝜎i,j=±1 – i.e. we treat these as “classical” spins. We consider only n.n. 
interaction.

Task: calculate numerically observables like the expectation value of the energy 
or of the magnetization, which will then be compared with analytic results.

236 15 The ISING Model

15.2 Numerics

We study a finite two-dimensional ISING model on a square lattice ˝ with grid-
points .xi; yj/, i; j D 1; 2; : : : ;N, which will be denoted by .i; j/. We write the
HAMILTON function in the form

H D !J
X
!
ij
i0j0

"
!i;j!i0 ;j0 ! h

X

ij

!i;j ; (15.46)

where the !i;j 2 f!1; 1g are treated as ‘classical’ spins. We consider nearest
neighbor interaction and regard the exchange parameter as independent of the actual
positions i; j. The problem is easily motivated:We calculate numerically observables
like the expectation value of the energy or of the magnetization which will then be
compared with analytic results. Such a procedure provides a rather simple check
of the quality of the numerical approach which can then be extended to similar
models which cannot any longer be treated analytically.We need numericalmethods
because summing over all possible configurations in a calculation of the partition
function ZN is simply no longer feasible since, for instance, for N D 100 we have
2N

2 D 210000 " 103000 possible configurations which will have to be considered as
follows from Eqs. (15.12), (15.13), and (15.14). A more convenient approach would
be to approximate the sums with the help of methods we encountered within the
context of Monte-Carlo integration in Sect. 14.2. For instance, the estimate of the
energy expectation value is given by

hEi D 1

M

MX

iD1
E.Ci/˙

r
var .E/
M

: (15.47)

Here, Ci, i D 1; 2; : : : ;M are M configurations drawn from the pdf (15.11), the
BOLTZMANN distribution. Equation (15.47) is referred to as the estimator of the
internal energy. We note that we also have to calculate an estimate of the variance
of E using a similar approach in order to determine the error induced by this
approximation.9

Hence, there remains the task to find configurations Ci which follow the
BOLTZMANN distribution (15.11). The inverse transformation method of Sect. 13.2
cannot be applied since E.Ci/ is not invertible. Furthermore, the rejection method

9In particular var .E/ D ˝
E2
˛!hEi2 is to be determined and only the second term is already known.

The first term,
˝
E2
˛
, is then estimated with the help of

˝
E2
˛ D 1

M

MX

iD1

E2i :
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Problem: We cannot sample all possible configurations of the system which 
grow exponentially with grid points, e.g. for N=100 we have 2N*N=210000≈103000

possible arrangements of spins.

Solution: Use Monte-Carlo methods – here the Metropolis algorithm

For example, using M (not magnetization here) configurations, we can get an 
approximation for the energy expectation value

if these M configurations follow the Boltzmann distribution (this basically 
means that we neglect most configurations which have exponentially small 
probability to be physical.)

236 15 The ISING Model
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compared with analytic results. Such a procedure provides a rather simple check
of the quality of the numerical approach which can then be extended to similar
models which cannot any longer be treated analytically.We need numericalmethods
because summing over all possible configurations in a calculation of the partition
function ZN is simply no longer feasible since, for instance, for N D 100 we have
2N

2 D 210000 " 103000 possible configurations which will have to be considered as
follows from Eqs. (15.12), (15.13), and (15.14). A more convenient approach would
be to approximate the sums with the help of methods we encountered within the
context of Monte-Carlo integration in Sect. 14.2. For instance, the estimate of the
energy expectation value is given by

hEi D 1

M
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iD1
E.Ci/˙

r
var .E/
M

: (15.47)

Here, Ci, i D 1; 2; : : : ;M are M configurations drawn from the pdf (15.11), the
BOLTZMANN distribution. Equation (15.47) is referred to as the estimator of the
internal energy. We note that we also have to calculate an estimate of the variance
of E using a similar approach in order to determine the error induced by this
approximation.9

Hence, there remains the task to find configurations Ci which follow the
BOLTZMANN distribution (15.11). The inverse transformation method of Sect. 13.2
cannot be applied since E.Ci/ is not invertible. Furthermore, the rejection method

9In particular var .E/ D ˝
E2
˛!hEi2 is to be determined and only the second term is already known.

The first term,
˝
E2
˛
, is then estimated with the help of

˝
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M

MX
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var(E)=⟨E2⟩-⟨E⟩2
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15.2 Numerics
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is useless since we would need the partition function ZN to make it work. However,
calculating the partition function is a task as difficult as calculating the internal
energy (15.13) without any approximations. Therefore, the method of choice will
be the METROPOLIS algorithm discussed in Sect. 14.3.

Let C be a given spin configuration on the two-dimensional square lattice
˝ . We modify the spin on one particular grid-point .i; j/ and obtain a trial spin
configuration C t. According to our discussion in Sect. 14.3, the probability of
accepting the new configuration C t is then given by

Pr.AjC t;C / D min
!
p.C t/

p.C /
; 1

"
D min

#
exp

$
!E.C t/ ! E.C /

kBT

%
; 1

&

D min
$
exp

!
!!Eij

kBT

"
; 1

%
: (15.48)

The spin orientation was changed only on one grid-point .i; j/, with "i;j ! O"i;j D
!"i;j; thus, the energy difference!Eij is easily evaluated using

!Eij D 2J"i;j
'
"iC1;j C "i!1;j C "i;j!1 C "i;jC1

(
C 2h"i;j : (15.49)

with "i;j the original spin orientation.
We focus now on numerical details, some particular to the numerical treatment of

the ISING model [19], and some of rather general nature which should be considered
whenever a Monte-Carlo simulation is planned.

(1) Lattice Geometry

We regard a two-dimensional N " N square lattice with periodic boundary condi-
tions10 in order to reduce finite volume effects. It is of advantage to write a program
code which will help to identify the nearest neighbors of some grid-point, since
we will need this information in the METROPOLIS run whenever we calculate the
energy difference due to a spin flip according to Eq. (15.49). To help with this task
a matrix neighbor.site; i/ will be generated only once for each choice of the system
size N. Here i D 1; 2; 3; 4 are the directions to the neighboring grid-points of the
grid-point site. In a first step the sites of the square lattice are relabeled following

10Periodic boundary conditions in two dimensions imply that

"NC1;j D "1;j and "i;NC1 D "i;1 ;

for all i; j.

After generation a new trial configuration 𝒞t from the current, valid 
configuration 𝒞, we accept the new one with the following probability

𝒞t is generated by just flipping one spin on the grid. Since we only consider n.n. 
interaction, the energy difference of the two configurations is given by the 
simple expression:
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• We consider a two-dimensional NxN square lattice with periodic boundary 
conditions in order to reduce finite volume effects

• Do not use the n.n. matrix suggested in the book – this is usually very 
inefficient (requires memory access). N.n. coordinates are easy to calculate on-
the-fly

• We need a good PRNG to choose random sites
• Initial configuration: the Metropolis algorithm produces configurations which 

become independent of the initial state and follow the Boltzmann distribution 
à start with random spins

• Run the algorithm for “a while” to thermalize the system – disregard these 
initial trial movements. How to determine “a while”? One should check if 
thermal equilibrium has been reached by analyzing the observable under 
consideration as function of time, then determine when initial biases are gone. 
In this case the observable reaches some saturation value as a function of the 
number of measurements. 
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• To check if saturation is reached, one should start with two different initial 
conditions and check when the observables will converge

• typically we study temperature dependencies and change the temperature 
once the equilibrium has been reached: either hot (random intial spins) or cold 
(ordered initial spins) start
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The Metropolis algorithm for the Ising model is executed in the following steps:
1. Choose an initial configuration 𝒞0
2. we go through all lattice sites (either systematically/sequentially, by random 

permutation, or completely random) and flip the spin: 𝜎ℓà -𝜎ℓ. Calculate 
∆Ei,j – one complete loop through all site is called a sweep. MC simulations 
typically need many sweeps

3. Accept the new configuration according to

4. go to next lattice site, repeat 2

Measurement:
1. do the above till thermal equilibrium is reached
2. start calculation of observables and average over N trial configurations, 

when accepted
3. (optional, repeat) change external parameter (T, h), re-equilibrate (typically 

shorter than the initial equilibration), and then average observable
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3. The new configuration is accepted with probability

Pr.AjC t;Ck/ D min
!
exp

"
!!Eij

kBT

#
; 1

$
; (15.52)

where !Eij is determined from Eq. (15.49). C t is accepted if Pr.AjC t;Ck/ is
equal to one or if Pr.AjC t;Ck/ " r 2 Œ0; 1" otherwise C t is rejected. If C t was
accepted we set CkC1 D C t.

4. Go to the next lattice site [step 2].

We note that instead of sampling the lattice sites sequentially as suggested in step
2 the lattice sites can also be sampled randomly with the help of

i D int.rN2/C 1 ; (15.53)

where r 2 Œ0; 1" is a uniformly distributed random number and int.#/ denotes the
integer part of a given quantity. Obviously, Eq. (15.53) is only useful in the single-
index notation i D 1; 2; : : : ;N2.

(4) Measurement

As soon as thermalization was achieved the procedure to measure interesting
observables can be started. Such a procedure consists of collecting the data required
and in calculating expectation values as was illustrated in Eq. (15.47) for the case of
the expectation value of the energy. A more detailed study of estimator techniques is
postponed to Chap. 19. However, there is one crucial point one should be aware of:
We already mentioned in our discussion of theMETROPOLIS algorithm in Sect. 14.3
that subsequent configurations Ck may be strongly correlated. This problem can be
circumvented by simply neglecting intermediate configurations. For instance, one
may allow a couple of ‘empty’ sweeps between two measurements.

In the following we discuss some selected results obtained with the numerical
approach described above.

15.3 Selected Results

We investigate the two-dimensional ISING model with periodic boundary conditions
and we chose h D 0 and J D 0:5 for all following illustrations.

In a first experiment we plan to check the thermalization process and, thus,
measure after every single sampling step and skip thermalization. The observables
of interest, the expectation value of the energy per particle, h"i, and the expectation
value of the magnetization per particle, hmi, are illustrated in Fig. 15.3 for 30 sweeps
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h=0, J=0.5
N=50, 
~105 measurements 
(32 sweeps)
kBT=3>kBTcà
paramagnetic state, 
⟨m⟩=0
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Fig. 15.3 Time evolution of
(a) the expectation value of
the energy per particle h"i
and (b) of the expectation
value of the magnetization
per particle hmi vs the
number of measurements M.
We used a cold start (solid
line) and a hot start (dashed
line) to achieve these results

Fig. 15.4 Typical spin
configuration for a
temperature well above the
critical temperature TC . Black
shaded areas correspond to
spin up sites while the white
areas are spin down sites

in a system of the size N D 50 which corresponds to m ! 8 " 104 measurements.
Moreover, we set kBT D 3 which should be well above TC according to Eq. (15.42).
Hence, we expect paramagnetic behavior, i.e. hmi D 0 in the equilibrium since the
acceptance probability is rather large because the spins are randomly orientated. In
addition, Fig. 15.4 shows a typical spin configuration for a temperature well above
TC.

According to Fig. 15.3b the expectation value of the magnetization per particle
hmi approaches indeed zero after a rather short thermalization period independent
of the starting procedure. This is certainly not the case for the energy expectation
value per particle h"i, Fig. 15.3a, which does not approach saturation even after
M ! 8 " 104 measurements for both starting procedures. The consequence is that
the thermalization period certainly needs to be longer than only 30 sweeps.

15.3 Selected Results 241

Fig. 15.3 Time evolution of
(a) the expectation value of
the energy per particle h"i
and (b) of the expectation
value of the magnetization
per particle hmi vs the
number of measurements M.
We used a cold start (solid
line) and a hot start (dashed
line) to achieve these results

Fig. 15.4 Typical spin
configuration for a
temperature well above the
critical temperature TC . Black
shaded areas correspond to
spin up sites while the white
areas are spin down sites

in a system of the size N D 50 which corresponds to m ! 8 " 104 measurements.
Moreover, we set kBT D 3 which should be well above TC according to Eq. (15.42).
Hence, we expect paramagnetic behavior, i.e. hmi D 0 in the equilibrium since the
acceptance probability is rather large because the spins are randomly orientated. In
addition, Fig. 15.4 shows a typical spin configuration for a temperature well above
TC.

According to Fig. 15.3b the expectation value of the magnetization per particle
hmi approaches indeed zero after a rather short thermalization period independent
of the starting procedure. This is certainly not the case for the energy expectation
value per particle h"i, Fig. 15.3a, which does not approach saturation even after
M ! 8 " 104 measurements for both starting procedures. The consequence is that
the thermalization period certainly needs to be longer than only 30 sweeps.

typical configuration

à 32 sweeps are not long enough to equilibrate the energy
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Fig. 15.5 (a) The expectation value of the energy per particle h"i, (b) the absolute value of the
expectation value of the magnetization per particle jhmij, (c) the heat capacity ch, and (d) the
magnetic susceptibility ! vs temperature kBT for the two-dimensional ISING model. The system
sizes are N D 5; 20; 50; 100

We conclude this chapter with an interesting note: Fig. 15.6 makes it quite clear
that the error of the expectation value of the magnetization and of the energy is
biggest for values around the transition temperature. In fact, if we increase the
system size the error will become even larger. The reason is quite obvious: The error
of our Monte-Carlo integration is proportional to the square root of the variance
of the investigated observable. However, since we deal with a second order phase
transition, this variance tends to infinity as N ! 1 [4]. There is one cure to the
problem:We are dealing here with finite-sized systems, thus, the variance will never
actually be infinitely large. Furthermore, according to Eq. (15.47) we can decrease
the error by increasing the number of measurements. Hence, if one is confronted
with large systems, one has also to perform many measurements in order to reduce
the error.14

14We note from Eq. (15.47) that we have to perform four times as many measurements in order to
reduce the error by a factor 2.
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Fig. 15.6 (a) The expectation value of the energy per particle h"i, (b) the expectation value of
the magnetization per particle jhmij, (c) the heat capacity ch , and (d) the magnetic susceptibility !
with error bars vs temperature kBT obtained for the two-dimensional ISING model of size N D 50

Fig. 15.7 For T ! TC the spins organize in WEISS domains. Here we show a typical spin
configuration for N D 100 and kBT D 1:15. The black shaded areas correspond to spin up sites
while the white areas indicate spin down sites
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Fig. 15.6 (a) The expectation value of the energy per particle h"i, (b) the expectation value of
the magnetization per particle jhmij, (c) the heat capacity ch , and (d) the magnetic susceptibility !
with error bars vs temperature kBT obtained for the two-dimensional ISING model of size N D 50

Fig. 15.7 For T ! TC the spins organize in WEISS domains. Here we show a typical spin
configuration for N D 100 and kBT D 1:15. The black shaded areas correspond to spin up sites
while the white areas indicate spin down sites
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• Implement Monte-Carlo solver for the Ising model
• equilibrate (> 500 sweeps), set J=0.5
• calculate magnetization, average energy, 

susceptibility and heat capacity across the 
phase transition

• do the above to decreasing and increasing 
temperature for h=0

• calculate error bars
• choose temperature steps smaller near Tc
• do the above for N=5,20,50,100 or even larger 

(optional)
• chose different J and h≠0 (optional)


