O 0 = O - O =00 ™ ™ = 00 00 ™Y™Y O ™ ™YW v~ O v v~ »vd

O™ O 0O = QA v = IRl) 0O o= O v = 1 £

Pendulum

Stability

| e
@)
,..—u
()
y 2
e
@)
=

Floating point numbers
Sources of Error

Python-Demo

o = B o B o == (B == = =P b = s =l T] s B e = e e T T e T = T o B B =

e B o B == B = (B o (S o (] s (o £ e b s | e e o b [s T e R e B e B e T o T v R o [o B = i

Motivation

Computational Physics aims at solving physical problems by means of
numerical methods developed in the field of numerical analysis, which is
concerned with the development and analysis of methods for the
numerical solution of practical problems.

Example of a problem without analytical solution (the error “function”):

/a ’ dxexp (—xz)

Typical problem to find probability to get values in an interval [a,b] € R for a normal

distribution.
No analytical solution [unless erf(x) is considered a solution] in contrast to e.g.

/ ’ dxexp (x) = exp (b) —exp (a)

Example of a physics problem, not-analytically solvable* is the pendulum,
described by the equation of motion:

é+§sm(9)=o

Usually combined with the initial conditions:
6(0) = 6, ,
H(0) =0 .

Again, this is in contrast to the much simpler harmonic oscillator,
which is obtained for 6,<<1: . g
0+ -60=0

{
[L
which has the solution: Q(t) = 6y cos(a)t) with @ = /g/l > 7 =21,/ -
g

14
* Some properties can be described by the elliptic integral of first kind (e.g. 1—4\/7K1 (k)).
8

But before we solve these problems:
Basics of numerical calculations

A. Glatz: Computational Physics

Binary representation

1x2° 1x2* 0x2' 1x2° 1x2" 0x2? 1x2° 1x2*

1101 1011

0.5 0.125 0.0625
Binary point

8+4+0+1+0.5+0+0.125 + 0.0625 = 13.6875 (Base 10)

Hexadecimal numbers (base 16): {0,1,...,15} ={0,1,...,9,a,b,..,f}

A. Glatz: Computational Physics >

Floating point numbers

Definitions
Bit = Oorl
Byte = 8bits

Word = Reals: 4 bytes (single precision)
8 bytes (double precision)
Integers: 1, 2, 4, or 8 byte signed
1, 2, 4, or 8 byte unsigned

IEEE single precision format:

o [

SR D GDDDDDDGE T
1 2345678 31

= (—1)° x 27127 x 1.f

s —sign, e — biased exponent, 1.f — mantissa/significand

REAL NUMBERS

P o N

0

e T

VT
FLOATING-POINT
NUMBERS

A. Glatz: Computational Physics

Single precision, special numbers

Smallest exponent: e = 0000 0000, represents denormal numbers (1.f — 0.f) unless f=0
Largest exponent: e = 1111 1111, represents do0, if f = 0
e = 1111 1111, represents NaN, if f £ 0

Number Range: e= 11111111 =28 - 1 = 255 reserved
e = 0000 0000 = 0O reserved
S0, p=e-1271s
1-127 < p < 254-127
126 < p < 127

Smallest positive normal number
= 1.0000 0000 - - - - - 0000x 27126
~ 1.2 x 10738
bin: 0000 0000 1000 0000 0000 0000 0000 0000
hex: 00800000
MATLAB: realmin(’single’)
Largest positive number
=1.1111 1111 -+ - - 1111x 2127
— (1 + (1 _ 2—23)) X 2127
~ 2128 ~ 3.4 x 1038
bin: 0111 1111 0111 1111 1111 1111 1111 1111
hex: 77ttt
MATLAB: realmax(’single’)

Zero
bin: 0000 0000 0000 0000 0000 0000 0000 0000
hex: 00000000

Subnormal numbers
Allow 1.f — 0.f (in software)
Smallest positive number = 0.0000 0000 - - - - - 0001 x 27126
=278 x 27126 ~ 1.4 x 1074

A. Glatz: Computational Physics

Double precision

S

double= I OO - -)
0 1234567 8 91011 12 63

r=(—1)% x2¢719%5 1. f

On average, on a PC of year 2012 build, calculations with double precision are 1.1—
1.6 times slower than with single precision.

Max(double)=(1 + (1 - 2752)) x 21023x1.7976931348623157 x 10308
Min(double>0)=2"1022x2 2250738585072014 x 107308

Subnormal, min =271022-524 9406564584124654 x 107324
Between 2°2=4,503,599,627,370,496 and 2°3=9,007,199,254,740,992 the representable numbers are exactly the
integers. For the next range, from 2°3 to 2°4, everything is multiplied by 2, so the representable numbers are the
even ones, etc. Conversely, for the previous range from 2°1 to 252, the spacing is 0.5, etc.

Definition “Machine epsilon” (€,,.,): the distance between 1 and the next largest

number.
=m§in{8>0)1—|—8> 1}

Algorithms

a sequence of logical and arithmetic operations (addition,
subtraction, multiplication or division) [on floating point
numbers], which allows to approximate the solution of the
problem under consideration.

— numerical errors will be unavoidable

Errors

Schematic classification of the errors occurring within a numerical procedure

Input

Algorithm

Input -Error

Output

-

Algorithmic-Error

Output-Error

roundoff errors and measurement
errors contained in the input data, e.g.
input as (round) decimal number 2>
converted to floating point

roundoff errors during evaluation
and of methodological errors due
to mathematical approximations

roundoff errors

Main sources of errors

In any applied numerical computation, there are several key sources of error:

Modeling/Measurement errors

i Inexactness of the mathematical model for the underlying physical phenomenon.
ii. Errors in measurements of parameters entering the model.

These do not concern us too much. The latter is the domain of the experimentalists.

Algorithmic errors

i. Roundoff errors in computer arithmetic (finite numerical precision imposed by the
computer).

ii. Discretization (methodological) errors: continuous processes are replaced by discrete ones
(e.g., summation to calculate an integral).

iii. “Termination” errors: infinite algorithms are terminated after a finite number of steps (e.g.,
iterations like x,,;=(x,+a/x,)/2 =2 sqgrt(a), n=> =°).

The latter two are the true domain of numerical analysis and are a consequence of the fact that
* Most systems of equations are too complicated to solve explicitly

* Even with known analytic solution, directly obtaining the precise numerical values may be
difficult

Roundoff Errors

* Example: store 2/3=0.6666666... in a floating point number: With e.g. 10 decimal
digit accuracy this would be stored as 0.6666666667 > 2/3
Or formally with Fl(x) being the floating point form of x

Fl (%) = 0.6666666667 > Fl(+/3) - FI(+/3) # FI(/3 - v/3)=3

* In binary, storing 0.1 is also problematic: 0.1,,=0.000110011001100...,

The difference between true value y and approximation y = FI(y) can be characterized
by absolute error:

€ = |y —)|
and relative error: . ‘y—§| _ €&
R A
y y €q €r
(1) 0.1 0.09 10.01 0.1

(2) 1000.0 999.99 1 0.01 0.00001

Roundoff error example

Solve the quadratic equation with parameter b:

224+ 2%1—-1=0

xy =—bEt Vb2 +1
Now we look at the solution for b>0 and x>0, i.e. = —b+ /b2 +1
For large b—> oo r=—b+\b2+1
= b+ b1+ 1/b2
= b(y/IT+1/02 — 1)

1
(i)

1

2b

Yielding:

For x=realmin=2.2 x 107398, we get b=1/(2 % realmin) = 2 x 10397

What would we get from (*)? x=0, when b2z21+b? or 1+1/b%=1
This happens when 1/b%=¢,,.,/2 ! Or b=sqrt(2/¢,,,.;,)=10%

A. Glatz: Computational Physics

(*)

14

1
b2+ 1

This gives the correct limit x=1/(2b), when b?21+b?

X

A. Glatz: Computational Physics

In the example this round-off error can be avoided by writing (*) as:

15

More examples, error propagation

Let x and y be two real numbers and x* and y* their floating point approximations.

Now, let the computer calculate x-y : First, x and y are replaced by x* and y*. The final
result is then (x*-y*)*.

Example: x=301/2000=.15050000 and y=301/2001=.150424787

- The exact result is x-y=301/4002000=.00007521239

Let us assume we have decimal floating point numbers with 4-digit mantissa, i.e.,
x*=.1505 and y*=.1504 - d*=(x*-y*)*=0.0001 - ¢,(x*)=0, ¢(y*)=10"%, g,(d*)=0.25

Example: coefficient error in polynomials of 10t degree:
p(x) = (x = 1)(x = 2)(x = 3)(x — 4)(x = 5)(x - 6)(x = 7)(x - 8)(x - 9)(x - 10)
a(x) = p(x) +x°
- Coefficients of the x> terms: =902055 in p and —=902054 in q
- relative error of these coefficients 10>. However, the roots of q are:
1.0000027558, 1.99921, 3.02591, 3.82275,
5.24676 + 0.751485i,7.57271 +1.11728 i, 9.75659 + 0.368389 i.

Methodological Errors

Result from replacement of mathematical expressions by approximate,
simpler ones.

¢ (2 do
id- T=4 —/ :
E.g. pendulum period: \ gJo V1—Ksin(a) k = sin (6y/2)

— 4\/2K1(k) .
g

T (2n)! 77

o0
. _ T 2n
Truncate K, seriesat Ki(k) = 2 Z 221 (1) k
some N: n=0 "~ il
N 42
/4 (2n)! .
=5 z_; 221 K" + Ry (k) Ry: truncation error
Or for derivatives (Chapter 2): d . flo+h)—f(x0) flxo+ h) — f(x0)
—f(x) = lim ~
dx =xg 0 h h

For some finite h = finite difference (relative error can
be minimal for some finite! h)

Log error

A. Glatz: Computational Physics

o) = W[~

Error trade-off

fxo + h) — f(x0)
h

X=X

e Using a smaller step size reduces truncation error.
 However, it increases the round-off error.
* Trade off/diminishing returns occurs: Always think and test!

Point of
diminishing
returns

Total error

Round off error

Truncation error

Log step size

18

Stability

An algorithm, equation or, even more general, a problem is referred to as
unstable or ill- conditioned if small changes in the input cause a large change
in the output.

x+y=2.0,
x+ 1.0ly =2.01

Example 1: Solution: x=1.0, y=1.0

Let us suppose we make a small error in the rhs of the second equation:
x+y=2.0,

Solution: x=0.0, y=2.0
x+1.0ly =2.02
l.e. 2 0.05% input error resulted in a 100% wrong result!

Furthermore, if the y-coefficient 1.01 in the original equation would have a
1% error and be 1.0, the equation would be unsolvable altogether!

A. Glatz: Computational Physics 19

$—10y— 11y =0,
y(0) =1, y(0) = -1

Example 2:

General solution: y = Aexp (—x) + Bexp (11x)

With initial conditions: y = exp (—X)
Adding a small input error in initial conditions: y(0) =1+ and y(0) =—-1+¢€

116 €

: _) €
Yields: y = (1 + — — E) exp(—x) + (E + E) exp (11x)

Y

— 1_18_i + i_|_i (12)
12 12 12 g) PUA

- problem is ill-conditioned: for large values of x the second term overrules the first one

12
i.e. the relative error is ’y -y
€ =

See Book for another example for induced instability and the relation to Chaos Theory!

A. Glatz: Computational Physics

20

Pendulum Demo with Python

A. Glatz: Computational Physics

% sin (6) = 0 o=

£ 6(0) =0 .
1. step, since 2" order ODE:

v=20 w = g/l

V= —w?sin0

O+

2. step, discretization of time in steps h,, i.e. t,=nh,

G(tn+1) _ H(tn)
hy
V(tn+1) — V(tn)
hy

3. step, implement

O(tns1) = 6(tn) + hev(ty)
V(tn+1) ~ V(tn) _ hth sin g(tn)

~ V(ty)
Euler scheme

~ —w?sin4(t,)

21

