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Computational Physics aims at solving physical problems by means of 
numerical methods developed in the field of numerical analysis, which is 

concerned with the development and analysis of methods for the 
numerical solution of practical problems.

Example of a problem without analytical solution (the error “function”):

Chapter 1
Some Basic Remarks

1.1 Motivation

Computational Physics aims at solving physical problems by means of numerical
methods developed in the field of numerical analysis [1, 2]. According to I. JACQUES

and C. JUDD [3], it is defined as:

Numerical analysis is concerned with the development and analysis of methods for the
numerical solution of practical problems.

Although the term practical problems remained unspecified in this definition, it
is certainly necessary to reflect on ways to find approximate solutions to complex
problems which occur regularly in natural sciences. In fact, in most cases it is not
possible to find analytic solutions and one must rely on good approximations. Let
us give some examples.

Consider the definite integral

Z b

a
dx exp

!
!x2

"
; (1.1)

which, for instance, may occur when it is required to calculate the probability that
an event following a normal distribution takes on a value within the interval Œa; b!,
where a; b 2 R. In contrast to the much simpler integral

Z b

a
dx exp .x/ D exp .b/ ! exp .a/ ; (1.2)

the integral (1.1) cannot be solved analytically because there is no elementary
function which differentiates to exp

!
!x2

"
. Hence, we have to approximate this

integral in such a way that the approximation is accurate enough for our purpose.
This example illustrates that even mathematical expressions which appear quite

© Springer International Publishing Switzerland 2016
B.A. Stickler, E. Schachinger, Basic Concepts in Computational Physics,
DOI 10.1007/978-3-319-27265-8_1

1

Typical problem to find probability to get values in an interval [a,b] ! R for a normal 
distribution.
No analytical solution [unless erf(x) is considered a solution] in contrast to e.g.
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Example of a physics problem, not-analytically solvable* is the pendulum, 
described by the equation of motion:

2 1 Some Basic Remarks

simple at first glance may need a closer inspection when a numerical estimate
for the expression is required. In fact, most numerical methods we will encounter
within this book have been designed before the invention of modern computers or
calculators. However, the applicability of these methods has increased and is still
increasing drastically with the development of even more powerful machines. We
give another example, namely the oscillation of a pendulum. We know from basic
mechanics [4–8] that the time evolution of a frictionless pendulum of mass m and
length ` in a gravitational field is modeled by the differential equation

R! C g
`
sin .!/ D 0 : (1.3)

The solution of this equation describes the oscillatory motion of the pendulum
around the originO within a two-dimensional plane (Fig. 1.1). Here ! is the angular
displacement and g is the acceleration due to gravity. Furthermore, a common
situation is described by initial conditions of the form:

(
!.0/ D !0 ;

P!.0/ D 0 :
(1.4)

For small initial angular displacements, !0 ! 1, we set in Eq. (1.3) sin .!/ " !
and obtain the differential equation of the harmonic oscillator:

R! C g
`
! D 0 : (1.5)

Together with the initial conditions (1.4) we arrive at the solution

!.t/ D !0 cos.!t/ ; (1.6)

Fig. 1.1 Schematic
illustration of the pendulum

* Some properties can be described by the elliptic integral of first kind (e.g. t= ). 

Usually combined with the initial conditions:
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Again, this is in contrast to the much simpler harmonic oscillator, 
which is obtained for q0<<1:
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which has the solution:
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with ! D
p
g=`. The period ! of the pendulum follows immediately:

! D 2"

s
`

g
: (1.7)

However, if the approximation of a small angular displacement #0 ! 1 is not
applicable, expressions (1.6) and (1.7) will not be valid. Thus, it is advisable to
apply energy conservation in order to arrive at analytic results. The total energy of
the pendulum is given by:

E D 1

2
mv2 C mg` Œ1 " cos .#/$ D 1

2
mv20 C mg` Œ1 " cos .#0/$ : (1.8)

Here v is the velocity of the point mass m and v0 and #0 are defined by the initial
conditions (1.4). Since P#.0/ D 0 we have

E D mg` Œ1 " cos .#0/$

D 2mg` sin2
!
#0

2

"
; (1.9)

where we made use of the relation: 1 " cos.x/ D 2 sin2.x=2/. We use this result in
Eq. (1.8) and arrive at:

1

2
v2 D 2g`

#
sin2

!
#0

2

"
" sin2

!
#

2

"$
: (1.10)

Since v2 D `2 P#2 we have

P# D 2

r
g
`

s

sin2
!
#0

2

"
" sin2

!
#

2

"
: (1.11)

Separation of variables yields

r
g
`
t D 1

2k

Z #

0

d'
q
1 " 1

k2 sin
2
%'
2

& ; (1.12)

with k D sin .#0=2/ : For t D ! we have # D #0 and we obtain for the period

! D 2

k

s
`

g

Z #0

0

d'
q
1 " 1

k2 sin
2
% '
2

& : (1.13)
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Let us transform the above integral into a more convenient form with help of
the substitution k sin.˛/ D sin .'=2/. Thus, ˛ 2 Œ0;!=2" and a straightforward
calculation yields:

# D 4

s
`

g

Z !
2

0

d˛
p
1 ! k2 sin2 .˛/

D 4

s
`

g
K1.k/ : (1.14)

The function K1.k/ introduced in (1.14) for k 2 R is referred to as the complete
elliptic integral of the first kind [9–12]. All these manipulations did not really result
in a simplification of the problem at hand because we are still confronted with
the integral in Eq. (1.14) which cannot be evaluated without the use of additional
approximationswhich will, in the end, result in a numerical solution of the problem.
A natural way to proceed would be to expand the complete elliptic integral in a
power series up to order N, where N is chosen in such a way that the truncation
error RN.k/ becomes negligible. We can find the desired expression in any text on
special functions [9, 11, 12]. It reads

K1.k/ D
!

2

1X

nD0

!
.2n/Š
22n.nŠ/2

"2
k2n

D !

2

NX

nD0

!
.2n/Š
22n.nŠ/2

"2
k2n C RN.k/ : (1.15)

Imagine now the inverse problem: the period # is given and the initial angle %0
is unknown. Again, we could expand the integrand in a power series and solve
the corresponding polynomial for %0. However, such an approach would be very
inefficient due to two reasons: first of all, we are confronted with the impossibility
of finding analytically the roots of a polynomial of order N > 41 and, secondly, at
which value of N should we truncate the power series if %0 is unknown? A glance in
a book on special functions might give us a better, i.e. more convenient, alternative.
Indeed, the inverse function of the elliptic integral K1.k/ with respect to k can be
given explicitly in terms of JACOBI elliptic functions [9–12]. Series expansions of
these functions have been developed such that we can approximate %0 by truncating
the respective series.

This example helped to illustrate that we depend on numerical approximations
of definite expressions in a multitude of cases. Even if an numerically approximate
solution has been found for a particular problem it will be adamant to check quite

1The roots of a real valued polynomial of order N D 3 or 4 are referred to as CARDANO’s or
FERRARI’s solutions [13], respectively.
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But before we solve these problems:
Basics of numerical calculations
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!i=0 or 1

Hexadecimal numbers (base 16): {0,1,…,15} = {0,1,…,9,a,b,..,f}



Floating point numbers
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Definitions
Bit = 0 or 1 
Byte = 8bits 
Word = Reals: 4 bytes (single precision) 

8 bytes (double precision) 
Integers: 1, 2, 4, or 8 byte signed

1, 2, 4, or 8 byte unsigned 

IEEE single precision format:

2 CHAPTER 1. IEEE ARITHMETIC

1.5 4-bit unsigned integers as hex numbers

Decimal Binary Hex
1 0001 1
2 0010 2
3 0011 3
...

...
...

10 1010 a
...

...
...

15 1111 f

1.6 IEEE single precision format:

sz}|{
⇤
0

ez }| {
⇤
1
⇤
2
⇤
3
⇤
4
⇤
5
⇤
6
⇤
7
⇤
8

fz }| {
⇤
9
· · · · · · · ·⇤

31

# = (�1)s ⇥ 2e�127 ⇥ 1.f

where s = sign
e = biased exponent
p=e-127 = exponent
1.f = significand (use binary point)

“float=“

s – sign, e – biased exponent, 1.f – mantissa/significand
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1.7. SPECIAL NUMBERS 3

1.7 Special numbers

Smallest exponent: e = 0000 0000, represents denormal numbers (1.f ! 0.f) unless f=0
Largest exponent: e = 1111 1111, represents ±1, if f = 0

e = 1111 1111, represents NaN, if f 6= 0

Number Range: e = 1111 1111 = 28 - 1 = 255 reserved
e = 0000 0000 = 0 reserved

so, p = e - 127 is
1 - 127  p  254-127
-126  p  127

Smallest positive normal number
= 1.0000 0000 · · · · ·· 0000⇥ 2�126

' 1.2 ⇥ 10�38

bin: 0000 0000 1000 0000 0000 0000 0000 0000
hex: 00800000
MATLAB: realmin(’single’)

Largest positive number
= 1.1111 1111 · · · · ·· 1111⇥ 2127

= (1 + (1� 2�23))⇥ 2127

' 2128 ' 3.4⇥ 1038

bin: 0111 1111 0111 1111 1111 1111 1111 1111
hex: 7f7↵↵f
MATLAB: realmax(’single’)

Zero
bin: 0000 0000 0000 0000 0000 0000 0000 0000
hex: 00000000

Subnormal numbers
Allow 1.f ! 0.f (in software)
Smallest positive number = 0.0000 0000 · · · · · 0001 ⇥ 2�126

= 2�23 ⇥ 2�126 ' 1.4 ⇥ 10�45

1.8 Examples of computer numbers

What is 1.0, 2.0 & 1/2 in hex ?

1.0 = (�1)0 ⇥ 2(127�127) ⇥ 1.0
Therefore, s = 0, e = 0111 1111, f = 0000 0000 0000 0000 0000 000
bin: 0011 1111 1000 0000 0000 0000 0000 0000
hex: 3f80 0000

2.0 = (�1)0 ⇥ 2(128�127) ⇥ 1.0
Therefore, s = 0, e = 1000 0000, f = 0000 0000 0000 0000 0000 000
bin: 0100 00000 1000 0000 0000 0000 0000 0000
hex: 4000 0000
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1.10. MACHINE EPSILON 5

1.10 Machine epsilon

Machine epsilon (✏mach) is the distance between 1 and the next largest number.
If 0  � < ✏mach/2, then 1 + � = 1 in computer math. Also since

x+ y = x(1 + y/x),

if 0  y/x < ✏mach/2, then x+ y = x in computer math.

Find ✏mach

The number 1 in the IEEE format is written as

1 = 20 ⇥ 1.000 . . . 0,

with 23 0’s following the binary point. The number just larger than 1 has a 1
in the 23rd position after the decimal point. Therefore,

✏mach = 2�23 ⇡ 1.192⇥ 10�7.

What is the distance between 1 and the number just smaller than 1? Here,
the number just smaller than one can be written as

2�1 ⇥ 1.111 . . . 1 = 2�1(1 + (1� 2�23)) = 1� 2�24

Therefore, this distance is 2�24 = ✏mach/2.
The spacing between numbers is uniform between powers of 2, with logarith-

mic spacing of the powers of 2. That is, the spacing of numbers between 1 and
2 is 2�23, between 2 and 4 is 2�22, between 4 and 8 is 2�21, etc. This spacing
changes for denormal numbers, where the spacing is uniform all the way down
to zero.

Find the machine number just greater than 5

A rough estimate would be 5(1+ ✏mach) = 5+5✏mach, but this is not exact. The
exact answer can be found by writing

5 = 22(1 +
1

4
),

so that the next largest number is

22(1 +
1

4
+ 2�23) = 5 + 2�21 = 5 + 4✏mach.

1.11 IEEE double precision format

Most computations take place in double precision, where round-o↵ error is re-
duced, and all of the above calculations in single precision can be repeated for
double precision. The format is

sz}|{
⇤
0

ez }| {
⇤
1
⇤
2
⇤
3
⇤
4
⇤
5
⇤
6
⇤
7
⇤
8
⇤
9
⇤
10
⇤
11

fz }| {
⇤
12
· · · · · · · ·⇤

63
“double=“

On average, on a PC of year 2012 build, calculations with double precision are 1.1–
1.6 times slower than with single precision.

Definition “Machine epsilon“ (𝜖mach): the distance between 1 and the next largest 
number. 

Max(double)=(1 + (1 − 2−52)) × 21023"1.7976931348623157 × 10308

Min(double>0)=2−1022"2.2250738585072014 × 10−308

Subnormal, min =2−1022−52"4.9406564584124654 × 10−324

Between 252=4,503,599,627,370,496 and 253=9,007,199,254,740,992 the representable numbers are exactly the 
integers. For the next range, from 253 to 254, everything is multiplied by 2, so the representable numbers are the 
even ones, etc. Conversely, for the previous range from 251 to 252, the spacing is 0.5, etc.

1.3 Methodological Errors 7

machine. Hence we obtain for the relative error

!r D
ˇ̌
ˇ̌0:d1d2d3 : : : dkdkC1 : : : 10

n ! 0:d1d2d3 : : : dk10n

0:d1d2d3 : : : dkdkC1 : : : 10n

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌0:dkC1dkC2 : : : 10

n!k

0:d1d2d3 : : : 10n

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌0:dkC1dkC2 : : :
0:d1d2d3 : : :

ˇ̌
ˇ̌ 10!k

" 1

0:1
10!k

D 10!kC1 : (1.19)

In the last steps we employed that, since d1 ¤ 0, we have 0:d1d2d3 : : : # 0:1
and accordingly 0:dkC1dkC2 : : : < 1. If the last digit would have been rounded (for
dkC1 # 5 we set dk D dk C 1 otherwise dk remains unchanged) instead of a simple
truncation, the relative error of a variable y would be !r D 0:5 $ 10!kC1.

Whenever an arithmetic operation is performed, the errors of the variables
involved is transferred to the result [15]. This can occur in an advantageous or
disadvantageous way, where we understand disadvantageous as an increase in
the relative error. Particular care is required when two nearly identical numbers
are subtracted (subtractive cancellation) or when a large number is divided by
a, in comparison, small number. In such cases the roundoff error will increase
dramatically. We note that it might be necessary to avoid such operations in our
aim to design an algorithm which is required to produce reasonable results. An
illustrative example and its remedy will be discussed in Sect. 1.3. However, before
proceeding to the next section we introduce a lower bound to the accuracy which is
achievable with a non-ideal computer, the machine-number. The machine-number
is smallest positive number " which can be added to another number, such that a
change in the result is observed. In particular,

" D min
ı

n
ı > 0

ˇ̌
ˇ1C ı > 1

o
: (1.20)

For a (nonexistent) super-computer, which is capable of saving as much digits
as desired, " would be arbitrarily small. A typical value for double-precision in
FORTRAN or C is " % 10!16.

1.3 Methodological Errors

A methodological error is introduced into the routine whenever a complex mathe-
matical expression is replaced by an approximate, simpler one. We already came
across an example when we regarded the series representation of the elliptic
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a sequence of logical and arithmetic operations (addition, 
subtraction, multiplication or division) [on floating point 

numbers], which allows to approximate the solution of the 
problem under consideration. 

à numerical errors will be unavoidable
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1.1 Motivation 5

carefully if the approach was (i) justified within the required accuracy, and (ii) if it
allowed to improve the induced error of the result. The second point is known as the
stability of a routine. We will discuss this topic in more detail in Sect. 1.4.

Throughout this book we will be confronted with numerous methods which will
allow approximate solutions of problems similar to the two examples illustrated
above. First of all, we would like to specify the properties we expect these methods
to have. Primarily, the method is to be formulated as an unambiguous mathematical
recipe which can be applied to the set of problems it was designed for. Its
applicability should be well defined and it should allow to determine an estimate for
the error. Moreover, infinite repetition of the procedure should approximate the exact
result to arbitrary accuracy. In other words, we want the method to be well defined in
algorithmic form. Consequently, let us define an algorithm as a sequence of logical
and arithmetic operations (addition, subtraction, multiplication or division) which
allows to approximate the solution of the problem under consideration within any
accuracy desired. This implies, of course, that numerical errors will be unavoidable.

Let us classify the occurring errors based on the structure every numerical
routine follows: We have input-errors, algorithmic-errors, and output-errors as
indicated schematically in Fig. 1.2. This structural classification can be refined:
input-errors are divided into roundoff errors and measurement errors contained in
the input data; algorithmic-errors consist of roundoff errors during evaluation and
of methodological errors due to mathematical approximations; finally, output errors
are, in fact, roundoff errors. In Sects. 1.2 and 1.3 we will concentrate on roundoff
errors and methodological errors. Since in most cases measurement errors cannot
be influenced by the theoretical physicist concerned with numerical modeling, this
particular part will not be discussed in this book. However, we will discuss the
stability of numerical routines, i.e. the influence of slight modifications of the input
parameters on the outcome of a particular algorithm in Sect. 1.4.

Fig. 1.2 Schematic
classification of the errors
occurring within a numerical
procedure

Schematic classification of the errors occurring within a numerical procedure 

roundoff errors and measurement 
errors contained in the input data, e.g.
input as (round) decimal number à
converted to floating point

roundoff errors during evaluation 
and of methodological errors due 
to mathematical approximations 

roundoff errors 



Main sources of errors
In any applied numerical computation, there are several key sources of error:

Modeling/Measurement errors
i. Inexactness of the mathematical model for the underlying physical phenomenon.
ii. Errors in measurements of parameters entering the model.
These do not concern us too much. The latter is the domain of the experimentalists. 

Algorithmic errors
i. Roundoff errors in computer arithmetic (finite numerical precision imposed by the 

computer).
ii. Discretization (methodological) errors: continuous processes are replaced by discrete ones 

(e.g., summation to calculate an integral).
iii. “Termination” errors: infinite algorithms are terminated after a finite number of steps (e.g., 

iterations like xn+1=(xn+a/xn)/2 à sqrt(a), nà ∞).

The latter two are the true domain of numerical analysis and are a consequence of the fact that
• Most systems of equations are too complicated to solve explicitly
• Even with known analytic solution, directly obtaining the precise numerical values may be 

difficult

A. Glatz: Computational Physics 12
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• Example: store 2/3=0.6666666… in a floating point number: With e.g. 10 decimal 
digit accuracy this would be stored as 0.6666666667  > 2/3
Or formally with Fl(x) being the floating point form of x

à

• In binary, storing 0.1 is also problematic: 0.110 = 0.000110011001100…2

The difference between true value y and approximation #𝑦 ≡ Fl(𝑦) can be characterized 
by absolute error:

and relative error:

6 1 Some Basic Remarks

1.2 Roundoff Errors

In fact, since every number is stored in a computer using a finite number of digits, we
have to truncate every non-terminating number at some point. For instance, consider
2
3
D 0:666666666666 : : : which will be stored as 0:6666666667 if the machine

allows only ten digits. Actually, computers use binary arithmetic (for which even
0:110 D 0:000110011001100 : : :2 is problematic2) but for the moment we shall
ignore this fact since the above example suffices to illustrate the crucial point. Let
Fl.x/ denote the floating-point form of a number x within the numerical range of the
machine. For the above example, i.e. a ten digit storage, we have

Fl
!
2

3

"
D 0:6666666667 : (1.16)

This has the consequence that, for instance, Fl.
p
3/ ! Fl.

p
3/ ¤ Fl.

p
3 !

p
3/D3.

However, Fl.
p
3/ ! Fl.

p
3/ " 3 within the defined range. Before we continue our

discussion on roundoff errors we have to introduce the concepts of the absolute and
the relative error. We denote the true value of a quantity by y and its approximate
value by y. Then the absolute error !a is defined as

!a D jy # yj ; (1.17)

while the relative error !r is given by

!r D
ˇ̌
ˇ̌y # y

y

ˇ̌
ˇ̌ D !a

jyj ; (1.18)

provided that y ¤ 0. In most applications, the relative error is more significant. This
is illustrated in Table 1.1, where it is intuitively obvious that in the second case the
approximate value is much better although the absolute error is the same for both
examples.

Let us have a look at the relative error of an arbitrary number stored to the k-th
digit: We can write an arbitrary number y in the form y D 0:d1d2d3 : : : dkdkC1 : : : 10n

with d1 ¤ 0 and n 2 Z. Accordingly, we write its approximate value as
y D 0:d1d2d3 : : : dk10n, where k is the maximum number of digits stored by the

Table 1.1 Illustration of the
significance of the relative
error

y y !a !r

(1) 0:1 0:09 0.01 0.1
(2) 1000:0 999:99 0.01 0.00001

2A disastrous effect of this binary approximation of 0.1 was discussed by T. Chartier [14].
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Solve the quadratic equation with parameter b:

Yielding:

Now we look at the solution for b>0 and x>0, i.e.
For large bà∞:

6 CHAPTER 1. IEEE ARITHMETIC

# = (�1)s ⇥ 2e�1023 ⇥ 1.f

where s = sign
e = biased exponent
p=e-1023 = exponent
1.f = significand (use binary point)

1.12 Roundo↵ error example

Consider solving the quadratic equation

x2 + 2bx� 1 = 0,

where b is a parameter. The quadratic formula yields the two solutions

x± = �b±
p

b2 + 1.

Consider the solution with b > 0 and x > 0 (the x+ solution) given by

x = �b+
p

b2 + 1. (1.1)

As b ! 1,

x = �b+
p
b2 + 1

= �b+ b
p

1 + 1/b2

= b(
p

1 + 1/b2 � 1)

⇡ b

✓
1 +

1

2b2
� 1

◆

=
1

2b
.

Now in double precision, realmin ⇡ 2.2 ⇥ 10�308 and we would like x to be
accurate to this value before it goes to 0 via denormal numbers. Therefore,
x should be computed accurately to b ⇡ 1/(2 ⇥ realmin) ⇡ 2 ⇥ 10307. What
happens if we compute (1.1) directly? Then x = 0 when b2 + 1 = b2, or
1 + 1/b2 = 1. That is 1/b2 = ✏mach/2, or b =

p
2/
p
✏mach ⇡ 108.

For a subroutine written to compute the solution of a quadratic for a general
user, this is not good enough. The way for a software designer to solve this
problem is to compute the solution for x as

x =
1

b+
p
b2 + 1

.

In this form, if b2+1 = b2, then x = 1/2b which is the correct asymptotic form.
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For x=realmin≈2.2 × 10−308 , we get b≈1/(2 × realmin) ≈ 2 × 10307

What would we get from (*)? x=0 , when b2≅1+b2 or 1+1/b2≅1
This happens when 1/b2="mach/2 ! Or b=sqrt(2/"mach)≈108

(*)
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In the example this round-off error can be avoided by writing (*) as:

This gives the correct limit x≈1/(2b), when b2≅1+b2
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Let x and y be two real numbers and x* and y* their floating point approximations.

Now, let the computer calculate x-y : First, x and y are replaced by x* and y*. The final 
result is then (x*-y*)*.

Example: x=301/2000≈.15050000 and y=301/2001≈.150424787
à The exact result is x-y=301/4002000≈.00007521239
Let us assume we have decimal floating point numbers with 4-digit mantissa, i.e.,
x*=.1505 and y*=.1504 à d*=(x*-y*)*=0.0001 à er(x*)=0, er(y*)=10-4, er(d*)=0.25

Example: coefficient error in polynomials of 10th degree: 
p(x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6)(x − 7)(x − 8)(x − 9)(x − 10) 

q(x) = p(x) + x5

à Coefficients of the x5 terms: −902055 in p and −902054 in q 
à relative error of these coefficients 10-5. However,  the roots of q are:

1.0000027558, 1.99921, 3.02591, 3.82275, 
5.24676 ± 0.751485 i , 7.57271 ± 1.11728 i , 9.75659 ± 0.368389 i.



Methodological Errors

A. Glatz: Computational Physics 17

Result from replacement of mathematical expressions by approximate, 
simpler ones.

E.g. pendulum period: 

1.1 Motivation 3

with ! D
p
g=`. The period ! of the pendulum follows immediately:

! D 2"

s
`

g
: (1.7)

However, if the approximation of a small angular displacement #0 ! 1 is not
applicable, expressions (1.6) and (1.7) will not be valid. Thus, it is advisable to
apply energy conservation in order to arrive at analytic results. The total energy of
the pendulum is given by:

E D 1

2
mv2 C mg` Œ1 " cos .#/$ D 1

2
mv20 C mg` Œ1 " cos .#0/$ : (1.8)

Here v is the velocity of the point mass m and v0 and #0 are defined by the initial
conditions (1.4). Since P#.0/ D 0 we have

E D mg` Œ1 " cos .#0/$

D 2mg` sin2
!
#0

2

"
; (1.9)

where we made use of the relation: 1 " cos.x/ D 2 sin2.x=2/. We use this result in
Eq. (1.8) and arrive at:

1

2
v2 D 2g`

#
sin2

!
#0

2

"
" sin2

!
#

2

"$
: (1.10)

Since v2 D `2 P#2 we have

P# D 2

r
g
`

s

sin2
!
#0

2

"
" sin2

!
#

2

"
: (1.11)

Separation of variables yields

r
g
`
t D 1

2k

Z #

0

d'
q
1 " 1

k2 sin
2
%'
2

& ; (1.12)

with k D sin .#0=2/ : For t D ! we have # D #0 and we obtain for the period

! D 2

k

s
`

g

Z #0

0

d'
q
1 " 1

k2 sin
2
% '
2

& : (1.13)

4 1 Some Basic Remarks

Let us transform the above integral into a more convenient form with help of
the substitution k sin.˛/ D sin .'=2/. Thus, ˛ 2 Œ0;!=2" and a straightforward
calculation yields:

# D 4

s
`

g

Z !
2

0

d˛
p
1 ! k2 sin2 .˛/

D 4

s
`

g
K1.k/ : (1.14)

The function K1.k/ introduced in (1.14) for k 2 R is referred to as the complete
elliptic integral of the first kind [9–12]. All these manipulations did not really result
in a simplification of the problem at hand because we are still confronted with
the integral in Eq. (1.14) which cannot be evaluated without the use of additional
approximationswhich will, in the end, result in a numerical solution of the problem.
A natural way to proceed would be to expand the complete elliptic integral in a
power series up to order N, where N is chosen in such a way that the truncation
error RN.k/ becomes negligible. We can find the desired expression in any text on
special functions [9, 11, 12]. It reads

K1.k/ D
!

2

1X

nD0

!
.2n/Š
22n.nŠ/2

"2
k2n

D !

2

NX

nD0

!
.2n/Š
22n.nŠ/2

"2
k2n C RN.k/ : (1.15)

Imagine now the inverse problem: the period # is given and the initial angle %0
is unknown. Again, we could expand the integrand in a power series and solve
the corresponding polynomial for %0. However, such an approach would be very
inefficient due to two reasons: first of all, we are confronted with the impossibility
of finding analytically the roots of a polynomial of order N > 41 and, secondly, at
which value of N should we truncate the power series if %0 is unknown? A glance in
a book on special functions might give us a better, i.e. more convenient, alternative.
Indeed, the inverse function of the elliptic integral K1.k/ with respect to k can be
given explicitly in terms of JACOBI elliptic functions [9–12]. Series expansions of
these functions have been developed such that we can approximate %0 by truncating
the respective series.

This example helped to illustrate that we depend on numerical approximations
of definite expressions in a multitude of cases. Even if an numerically approximate
solution has been found for a particular problem it will be adamant to check quite

1The roots of a real valued polynomial of order N D 3 or 4 are referred to as CARDANO’s or
FERRARI’s solutions [13], respectively.
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k2n
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NX
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Imagine now the inverse problem: the period # is given and the initial angle %0
is unknown. Again, we could expand the integrand in a power series and solve
the corresponding polynomial for %0. However, such an approach would be very
inefficient due to two reasons: first of all, we are confronted with the impossibility
of finding analytically the roots of a polynomial of order N > 41 and, secondly, at
which value of N should we truncate the power series if %0 is unknown? A glance in
a book on special functions might give us a better, i.e. more convenient, alternative.
Indeed, the inverse function of the elliptic integral K1.k/ with respect to k can be
given explicitly in terms of JACOBI elliptic functions [9–12]. Series expansions of
these functions have been developed such that we can approximate %0 by truncating
the respective series.

This example helped to illustrate that we depend on numerical approximations
of definite expressions in a multitude of cases. Even if an numerically approximate
solution has been found for a particular problem it will be adamant to check quite

1The roots of a real valued polynomial of order N D 3 or 4 are referred to as CARDANO’s or
FERRARI’s solutions [13], respectively.

Truncate K1 series at 
some N:

RN: truncation error

Or for derivatives (Chapter 2):
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integral (1.12) in Sect. 1.1. Although we could evaluate the series up to an arbitrary
order N, we are definitely not able to sum up the coefficients to infinite order.
Hence, it is not possible to get rid of methodological errors whenever we have to
deal with expressions we cannot evaluate analytically. Another intriguing example
is the numerical differentiation of a given function. The standard approximation of
a derivative reads

f 0.x0/ D
d
dx

f .x/
ˇ̌
ˇ̌
xDx0

! f .x0 C h/" f .x0/
h

: (1.21)

This approximation is referred to as finite difference and will be discussed in more
detail in Chap. 2. One would, in a first guess, expect that the obtained value gets
closer to the true value of the derivative f 0.x0/ with decreasing values of h. From a
calculus point of view, this is correct since by definition

d
dx

f .x/
ˇ̌
ˇ̌
xDx0

D lim
h!0

f .x0 C h/" f .x0/
h

: (1.22)

However, this is not the case numerically. In particular, one can find a value Oh
for which the relative error is minimal, while for values h < Oh and h > Oh the
approximation obtained is worse in comparison. The reason is that for small values
of h the roundoff errors dominate the result since f .x0 C h/ and f .x0/ almost cancel
while 1=h is very small. For h > Oh, the methodological error, i.e. the replacement of
a derivative by a finite difference, controls the result.

We give one further example [16] in order to illustrate the interplay between
methodological errors and roundoff errors. We regard the, apparently nonhazardous,
numerical solution of a quadratic equation

ax2 C bxC c D 0 ; (1.23)

where a; b; c 2 R, a ¤ 0. The well known solutions read

x1 D
"bC

p
b2 " 4ac
2a

and x2 D
"b "

p
b2 " 4ac
2a

: (1.24)

Cautious because of the above examples, we immediately diagnose the danger of a
subtractive cancellation in the expression of x1 for b > 0 or in x2 for b < 0, and
rewrite the above expression for x1:

x1 D
."bC

p
b2 " 4ac/
2a

."b "
p
b2 " 4ac/

."b "
p
b2 " 4ac/

D 2c

"b "
p
b2 " 4ac

: (1.25)
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For some finite h à finite difference (relative error can 
be minimal for some finite! h)
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An algorithm, equation or, even more general, a problem is referred to as 
unstable or ill- conditioned if small changes in the input cause a large change 

in the output. 

Example 1: 

1.4 Stability 9

For x2 we obtain

x2 D
2c

!bC
p
b2 ! 4ac

: (1.26)

Consequently, if b > 0 x1 should be calculated using Eq. (1.25) and if b < 0
Eq. (1.26) should be used to calculate x2. Moreover, the above expressions can be
cast into one expression by setting

x1 D
q
a

and x2 D
c
q
; (1.27)

with

q D !1
2

h
bC sgn.b/

p
b2 ! 4ac

i
: (1.28)

Thus, Eqs. (1.27) and (1.28) can be used to calculate x1 and x2 for any sign of b.

1.4 Stability

When a new numerical method is designed stability is the third crucial point after
roundoff errors and methodological errors [17]. We give an introductory definition:

An algorithm, equation or, even more general, a problem is referred to as unstable or ill-
conditioned if small changes in the input cause a large change in the output.

It will be followed by a couple of elucidating examples [3].3 To be more specific,
let us now, for instance, consider the following system of equations

xC y D 2:0;

xC 1:01y D 2:01 : (1.29)

These equations are easily solved and give x D 1:0 and y D 1:0. To make our
point we consider now the case in which the right hand side of the second equation
of (1.29) is subjected to a small perturbation, i.e. we consider in particular the
following system of equations

xC y D 2:0;

xC 1:01y D 2:02 : (1.30)

3Although unstable behavior is not desirable in the first place the discovery of unstable systems
was the birth of a specific branch in physics called Chaos Theory. We briefly comment on this
point at the end of this section.

Solution: x=1.0, y=1.0

Let us suppose we make a small error in the rhs of the second equation:
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It will be followed by a couple of elucidating examples [3].3 To be more specific,
let us now, for instance, consider the following system of equations

xC y D 2:0;

xC 1:01y D 2:01 : (1.29)

These equations are easily solved and give x D 1:0 and y D 1:0. To make our
point we consider now the case in which the right hand side of the second equation
of (1.29) is subjected to a small perturbation, i.e. we consider in particular the
following system of equations

xC y D 2:0;

xC 1:01y D 2:02 : (1.30)

3Although unstable behavior is not desirable in the first place the discovery of unstable systems
was the birth of a specific branch in physics called Chaos Theory. We briefly comment on this
point at the end of this section.

Solution: x=0.0, y=2.0

I.e. a 0.05% input error resulted in a 100% wrong result!

Furthermore, if the y-coefficient 1.01 in the original equation would have a 
1% error and be 1.0, the equation would be unsolvable altogether!
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Example 2: 

10 1 Some Basic Remarks

The corresponding solution is x D 0:0 and y D 2:0. We observe that a relative
change of 0:05% on the right hand side of the second equation in (1.29) resulted
in a 100% relative change of the solution. Moreover, if the coefficient of y in the
second equation of (1.29) were 1:0 instead of 1:01, which corresponds to a relative
change of 1%, the equations would be unsolvable. This is a behavior typical for
ill-conditioned problems which, for obvious reasons, should be avoided whenever
possible.

We give a second example: We consider the following initial value problem

(
Ry ! 10Py ! 11y D 0 ;

y.0/ D 1; Py.0/ D !1 :
(1.31)

The general solution is readily obtained to be of the form

y D A exp .!x/C B exp .11x/ ; (1.32)

with numerical constants A and B. The initial conditions yield the unique solution

y D exp .!x/ : (1.33)

The initial conditions are now changed by two small parameters ı; ! > 0 to give:

y.0/ D 1C ı and Py.0/ D !1C ! : (1.34)

The unique solution which satisfies these initial conditions is:

y D
!
1C 11ı

12
! !

12

"
exp.!x/C

!
ı

12
C !

12

"
exp .11x/ : (1.35)

We calculate the relative error

!r D
ˇ̌
ˇ̌y ! y

y

ˇ̌
ˇ̌

D
!
11ı

12
! !

12

"
C
!
ı

12
C !

12

"
exp .12x/ ; (1.36)

which indicates that the problem is ill-conditioned since for large values of x the
second term definitely overrules the first one.

Another, but not less serious kind of problem is induced instability:

A method is referred to as induced unstable if a small error at one point of the calculation
induces a large error at some subsequent point.

Induced instability is particularly dangerous since small roundoff errors are
unavoidable in most calculations. Hence, if some part of the whole algorithm is
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Adding a small input error in initial conditions:

Yields:

i.e. the relative error is
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à problem is ill-conditioned: for large values of x the second term overrules the first one 

See Book for another example for induced instability and the relation to Chaos Theory!
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2 1 Some Basic Remarks

simple at first glance may need a closer inspection when a numerical estimate
for the expression is required. In fact, most numerical methods we will encounter
within this book have been designed before the invention of modern computers or
calculators. However, the applicability of these methods has increased and is still
increasing drastically with the development of even more powerful machines. We
give another example, namely the oscillation of a pendulum. We know from basic
mechanics [4–8] that the time evolution of a frictionless pendulum of mass m and
length ` in a gravitational field is modeled by the differential equation

R! C g
`
sin .!/ D 0 : (1.3)

The solution of this equation describes the oscillatory motion of the pendulum
around the originO within a two-dimensional plane (Fig. 1.1). Here ! is the angular
displacement and g is the acceleration due to gravity. Furthermore, a common
situation is described by initial conditions of the form:

(
!.0/ D !0 ;

P!.0/ D 0 :
(1.4)

For small initial angular displacements, !0 ! 1, we set in Eq. (1.3) sin .!/ " !
and obtain the differential equation of the harmonic oscillator:

R! C g
`
! D 0 : (1.5)

Together with the initial conditions (1.4) we arrive at the solution

!.t/ D !0 cos.!t/ ; (1.6)

Fig. 1.1 Schematic
illustration of the pendulum
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1. step, since 2nd order ODE:

𝜈 ≡ 𝜃̇
𝜈̇ = −𝜔! sin 𝜃

1.1 Motivation 3

with ! D
p
g=`. The period ! of the pendulum follows immediately:

! D 2"

s
`

g
: (1.7)

However, if the approximation of a small angular displacement #0 ! 1 is not
applicable, expressions (1.6) and (1.7) will not be valid. Thus, it is advisable to
apply energy conservation in order to arrive at analytic results. The total energy of
the pendulum is given by:

E D 1

2
mv2 C mg` Œ1 " cos .#/$ D 1

2
mv20 C mg` Œ1 " cos .#0/$ : (1.8)

Here v is the velocity of the point mass m and v0 and #0 are defined by the initial
conditions (1.4). Since P#.0/ D 0 we have

E D mg` Œ1 " cos .#0/$

D 2mg` sin2
!
#0

2

"
; (1.9)

where we made use of the relation: 1 " cos.x/ D 2 sin2.x=2/. We use this result in
Eq. (1.8) and arrive at:

1

2
v2 D 2g`

#
sin2

!
#0

2

"
" sin2

!
#

2

"$
: (1.10)

Since v2 D `2 P#2 we have

P# D 2

r
g
`

s

sin2
!
#0

2

"
" sin2

!
#

2

"
: (1.11)

Separation of variables yields

r
g
`
t D 1

2k

Z #

0

d'
q
1 " 1

k2 sin
2
%'
2

& ; (1.12)

with k D sin .#0=2/ : For t D ! we have # D #0 and we obtain for the period

! D 2

k

s
`

g

Z #0

0

d'
q
1 " 1

k2 sin
2
% '
2

& : (1.13)

2. step, discretization of time in steps ht, i.e. tn=nht

𝜃 𝑡"#$ − 𝜃 𝑡"
ℎ%

≈ 𝜈(𝑡")

𝜈 𝑡"#$ − 𝜈 𝑡"
ℎ%

≈ −𝜔! sin 𝜃(𝑡")
Euler scheme

3. step, implement

𝜃 𝑡"#$ ≈ 𝜃 𝑡" + ℎ%𝜈(𝑡")
𝜈 𝑡"#$ ≈ 𝜈 𝑡" − ℎ%𝜔! sin 𝜃(𝑡")


