

Discretization & Finite Differences

- consider a smooth function f(x) on the finite interval [a,b] $\in \mathbb{R}$
- Divide interval [a,b] into (N-1) $\in \mathbb{N}$ equally spaced sub-intervals of form $[x_i, x_{i+1}]$, where x_1 =a, x_N =b, i.e.

$$x_i = a + (i-1)\frac{b-a}{N-1}, \quad i = 1, \dots, N$$

Define

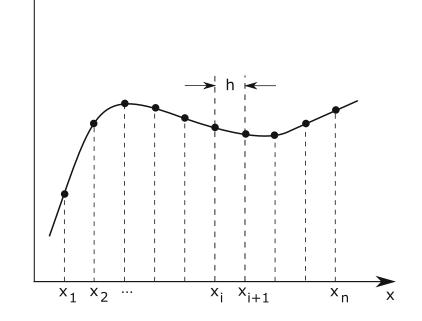
$$h = x_{i+1} - x_i = \frac{b-a}{N-1}, \quad \forall i = 1, \dots, N-1$$

f(x)

(in general $h \rightarrow h_i$)

 h should be chosen sufficiently small to approximate f(x) [i.e. some interpolation in [x_i,x_{i+1}] should reproduce f(x) within a required accuracy]

• (in regions of rapid varying of f(x), the gridspacing should be smaller when using h_i)



Derivatives

- Notation: function f(x) at x_i : $f_i \equiv f(x_i)$
- n-th derivative: $[f^{(0)}(x)=f(x)]$

$$f_i^{(n)} \equiv f^{(n)}(x_i) = \left. \frac{\mathrm{d}^n f(x)}{\mathrm{d} x^n} \right|_{x=x_i}$$

for the first derivate of a smooth function we know:

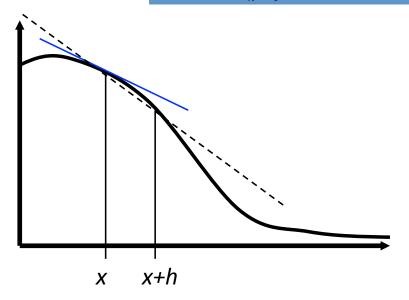
$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{f(x) - f(x-h)}{h}$$
$$= \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

First Derivative

The mathematical definition:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 Graphically, as the tangential line:



- Numerically, we can not calculate the limit as h goes to zero, so we need to approximate it. [Discreteness of floating point numbers and subtractive cancellation]
- Apply directly for a non-zero h leads to the slope of the secant curve.

Taylor series

• If the function f(x) is (n-1)-times continuously differentiable on the interval [a, b] then it can be expressed in terms of a series expansion at point $x_0 \in [a,b]$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}[\zeta(x)]}{(n+1)!} (x - x_0)^{n+1}, \quad \forall x \in [a, b]$$

truncation error with $\zeta(x)$ between x and x_0

In third order
$$\rightarrow$$

$$f_{i+1} = f(x_i + h)$$

$$f_{i-1} = f(x_i - h)$$

$$f_{i+1} = f(x_i) + hf'(x_i) + \frac{h^2}{2}f''(x_i) + \frac{h^3}{6}f'''[\zeta(x_i + h)]$$

$$= f_i + hf'_i + \frac{h^2}{2}f''_i + \frac{h^3}{6}f'''_{i+\epsilon\zeta},$$

$$f_{i-1} = f_i - hf_i' + \frac{h^2}{2}f_i'' - \frac{h^3}{6}f_{i+\epsilon_{\zeta}}'''$$

Finite Difference Derivatives

- Difference operators
 - Forward difference:
 - Backward difference:
 - Central difference:

$$\Delta + f_i = f_{i+1} - f_i$$

$$\Delta - f_i = f_i - f_{i-1}$$

$$\Delta_c f_i = f_{i+1} - f_{i-1}$$

Forward difference derivative:

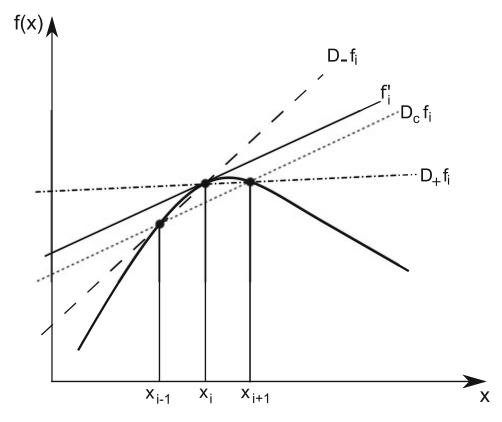
$$D_+ f_i = \frac{\Delta_+ f_i}{h} = \frac{f_{i+1} - f_i}{h}$$

Backward difference derivative:

$$D_{-}f_{i} = \frac{\Delta_{-}f_{i}}{h} = \frac{f_{i} - f_{i-1}}{h}$$

Central difference derivative:

$$D_c f_i = \frac{\Delta_c f_i}{2h} = \frac{f_{i+1} - f_{i-1}}{2h}$$



• • •

This gives for the Taylor series:

$$f'_{i} = D_{+}f_{i} - \frac{h}{2}f''_{i} - \frac{h^{2}}{6}f'''_{i+\epsilon_{\zeta}}$$

$$= D_{-}f_{i} + \frac{h}{2}f''_{i} - \frac{h^{2}}{6}f'''_{i+\epsilon_{\zeta}}$$

$$= D_{c}f_{i} - \frac{h^{2}}{6}f'''_{i+\epsilon_{\zeta}}.$$

Note:
$$D_c = \frac{1}{2}(D_+ + D_-)$$

Reminder: errors

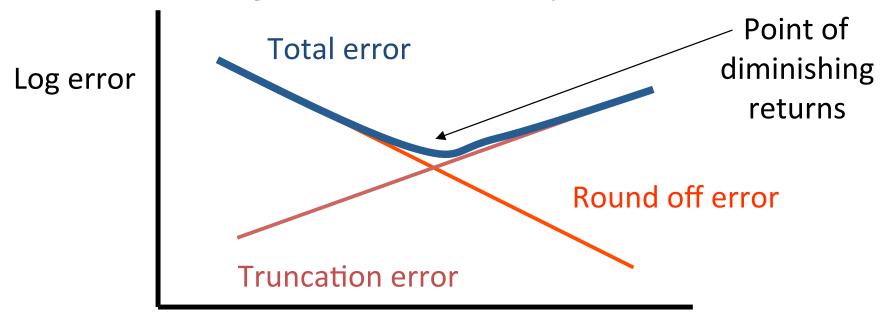
- Truncation Error: introduced in the solution by the approximation of the derivative
- Round-off Error: introduced in the computation by the finite number of digits used by the computer
- Solving differential equations is done in multiple steps. Therefore, we also have:
 - Local Error: from each term of the equation
 - Global Error: from the accumulation of local error

Truncation errors

- Let f(x) = a, and f(x+h) = a+e.
- Then, as h approaches zero: e<<a.
- With limited precision on our computer, our representation of $f(x) \approx a \approx f(x+h)$.
- We can easily get a random round-off bit as the most significant digit in the subtraction.
- Dividing by h, leads to a very wrong answer for f'(x).

Error trade-off

- Using a smaller step size reduces truncation error.
- However, it increases the round-off error.
- Trade off/diminishing returns occurs: Always think and test!



Log step size

10

Multi-point approximations

- Forward and Backward derivates use two points, Central **three** points (f_i cancels).
- Using higher order terms in the Taylor series results in smaller truncation errors: $h_{c'} + h_{c''} + h_{c''}^2 + h_{c''}^3 + h_{c''}$

$$D_{+}f_{i} = f'_{i} + \frac{h}{2}f''_{i} + \frac{h^{2}}{6}f'''_{i} + \frac{h^{3}}{24}f^{IV}_{i} + \frac{h^{4}}{120}f^{V}_{i} + \dots$$

$$D_{-}f_{i} = f'_{i} - \frac{h}{2}f''_{i} + \frac{h^{2}}{6}f'''_{i} - \frac{h^{3}}{24}f^{IV}_{i} + \frac{h^{4}}{120}f^{V}_{i} \mp \dots$$

$$D_{c}f_{i} = f'_{i} + \frac{h^{2}}{6}f'''_{i} + \frac{h^{4}}{120}f^{V}_{i} + \dots$$

- One finds:
- and therefore:

Read chapter 2.4 for higher order approximations

$$8D_c f_i - D_c f_{i-1} - D_c f_{i+1} = 6f_i' - \frac{h^4}{5} f_{i+\epsilon_{\zeta}}^V$$

$$f'_{i} = \frac{1}{6} \left(8D_{c}f_{i} - D_{c}f_{i+1} - D_{c}f_{i-1} \right) + \frac{h^{4}}{30} f_{i}^{V}$$

$$= \frac{1}{12h} \left(f_{i-2} - 8f_{i-1} + 8f_{i+1} - f_{i+2} \right) + \frac{h^{4}}{30} f_{i}^{V}$$

Example

For a concrete example of the error due to finite difference approximation we look at

$$f(x) = \exp(i\omega x) \qquad x \in \mathbb{R}$$

$$f'(x) = i\omega \exp(i\omega x)$$

$$x_k = x_0 + kh$$

$$f_k = \exp\left[i\omega(x_0 + kh)\right]$$

$$f'_k = i\omega \exp[i\omega(x_0 + kh)] = i\omega f_k$$

Finite difference derivative

$$D_+ f_k = i\omega f_k \exp\left(\frac{ih\omega}{2}\right) \operatorname{sinc}\left(\frac{h\omega}{2}\right)$$

$$sinc(x)=sin(x)/x$$

$$D_{-}f_{k} = i\omega f_{k} \exp\left(-\frac{i\hbar\omega}{2}\right) \operatorname{sinc}\left(\frac{\hbar\omega}{2}\right)$$

$$D_c f_k = i\omega f_k \operatorname{sinc}(h\omega)$$

• • •

To study how good the the finite difference derivates are, we look at its ratio to true derivate:

$$\left| \frac{D_{+}f_{k}}{f_{k}'} \right| = \left| \frac{D_{-}f_{k}}{f_{k}'} \right| = \operatorname{sinc}\left(\frac{h\omega}{2}\right)$$

$$\left| \frac{D_{c}f_{k}}{f_{k}'} \right| = \operatorname{sinc}(h\omega)$$

- since $|\sin(x)| \le |x|$ for all x, the approximation always underestimates the derivative since f(x) oscillates and the finite difference derivative implies a linear interpolation.
- for $h\omega$ being multiples of 2π (or π) the finite differences are zero.
 - \rightarrow choose h<<2 π/ω
- Easy to see if analytical form known (then one does not need a finite difference anyway). Typically, even f(x) is not known analytically.
 - → h has to be chosen carefully

Partial Derivatives

Works similarity by independently discretizing the function on a regular lattice.

E.g. central difference for mixed derivative of g(x,y):

$$\frac{\partial}{\partial y} \frac{\partial}{\partial x} g(x, y) \Big|_{(i,j)} = \frac{1}{2h_x} \left[\frac{\partial}{\partial y} g(x, y) \Big|_{(i+1,j)} - \frac{\partial}{\partial y} g(x, y) \Big|_{(i-1,j)} \right] + \mathcal{O}(h_x^2)$$

$$= \frac{1}{2h_x} \left[\frac{g_{i+1,j+1} - g_{i+1,j-1}}{2h_y} + \mathcal{O}(h_y^2) \Big|_{(i+1,j)} - \frac{g_{i-1,j+1} - g_{i-1,j-1}}{2h_y} - \mathcal{O}(h_y^2) \Big|_{(i-1,j)} \right] + \mathcal{O}(h_x^2) , \quad (1)$$

$$\rightarrow \frac{\partial}{\partial y} \left. \frac{\partial}{\partial x} g(x, y) \right|_{(i,j)} \approx \frac{1}{2h_x} \frac{g_{i+1,j+1} - g_{i+1,j-1} - g_{i-1,j+1} + g_{i-1,j-1}}{2h_y}$$

There are others methods, e.g., the finite element method (FEM): the function is discretized in d-dimensional polytopes or simplexes (elements) and interpolated by polynomials within.

Demo & Homework

Planned schedule for following lectures

- Thursday: Numerical integration, more python
- Next week: The Kepler problem lecture&lab
- 2/4&6: ODEs lecture&lab
- 2/11&13: Double Pendulum lecture&lab
- 2/18&20: Molecular dynamics lecture&lab
- 2/25&27: 1D stationary heat equation lecture&lab
- 3/4&6: PDEs lecture&lab (not topic in midterm
- spring break
- 3/18&20: no class
- 3/25&27: midterm task + random numbers & Monte Carlo
- 4/1&3: Ising model lecture&lab
- April: final project assignment and preparation
- 4/24: final project presentations

