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Discretization & Finite Differences

consider a smooth function f(x) on the finite interval [a,b] € R
Divide interval [a,b] into (N-1) € N equally spaced sub-intervals of form [x;,x,4],

where x,=a, x\=b, i.e.

b—a

xi=a+ (i—1 ,
Define b—a
h:i — A = ’
S VO

(in general h = h;)

h should be chosen sufficiently small

to approximate f(x) [i.e. some interpolation
in [x;,x;,1] should reproduce f(x) within a
required accuracy]

(in regions of rapid varying of f(x), the grid-
spacing should be smaller when using h))

Vi

=1,...,N—1

FOOA




Derivatives

* Notation: function f(x) at x;: f; =f(x,)
* n-th derivative: [ /7 (x)=f(x) ]

d"f (x)
dx”

7 =0 (x) =

X=X;

* for the first derivate of a smooth function we know:

fx+h) —fx)
m

) = %i—>o h
_ o @ —fG—h)
= lim
h—0 h

_ o S ) —fa—h)
= l1m
h—0 2h




First Derivative

e The mathematical definition: _

 Graphically, as the
tangential line:

X X+h

* Numerically, we can not calculate the limit as h goes to zero, so we
need to approximate it. [Discreteness of floating point numbers and

subtractive cancellation]
 Apply directly for a non-zero h leads to the slope of the secant

curve.

A. Glatz: Computational Physics



Taylor series

e |If the function f(x) is (n-1)-times continuously differentiable on the interval [a,
b] then it can be expressed in terms of a series expansion at point x; € [a,b]:

£® (x0) FUD[E ()] 1
f(x)—; = x0) + GF D! (x—x0)"t!,  Vx € [a,b]

truncation error
with {(x) between x and x,

In third order-> . _ . Vo h_z// | h_3/// |
f+]_f(x +h) fiv1 = f(x) + A (%) + 2f (x;) + 6f [C (x; + h)]

f] f(x h) / h2 // h3 /11

Jimt =Jim hf_l__f”_—f/j;ez



Finite Difference Derivatives

* Difference operators

* Forward difference: Atfi = fiv1 — fi
* Backward difference: A_fi = fi — fiq
* Central difference: Ao = fint — i

Forward difference derivative: A

Avfi o fir1 — i
D ;= =
+fi P ;
e Backward difference derivative:
A_f; i —Ji—
g A _fimfe
h h
e Central difference derivative:
A [ [ — Ji—
D.f = o :f+1 Ji—1
2h 2h

A. Glatz: Computational Physics



This gives for the Taylor series:
fi = D4f; m

h
— D_ﬁ —I_ _f;'” o fil-/liq

6

= D. f;

1
Note: DC — 5(D.|_ —|— D_)

A. Glatz: Computational Physics



Reminder: errors

Truncation Error: introduced in the solution by
the approximation of the derivative

Round-off Error: introduced in the
computation by the finite number of digits
used by the computer

Solving differential equations is done in

multiple steps. Therefore, we also have:

* Local Error: from each term of the equation

* Global Error: from the accumulation of local
error



Truncation errors

* Let f(x) =a, and f(x+h) = a+e.

 Then, as h approaches zero: e<<a.

 With limited precision on our computer, our
representation of f(x) = a = f(x+h).

 We can easily get a random round-off bit as
the most significant digit in the subtraction.

* Dividing by h, leads to a very wrong answer for

f7(x).



Error trade-off

* Using a smaller step size reduces truncation error.
* However, it increases the round-off error.
e Trade off/diminishing returns occurs: Always think and test!

Point of
Total error .
Log error diminishing

returns

Round off error

Truncation error

Log step size

A. Glatz: Computational Physics
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Multi-point approximations

* Forward and Backward derivates use two points, Central
three points ( f; cancels).
e Using higher order terms in the Taylor series results in

smaller truncation errors: h h? 4
Difi =fi + 3fi + =f" + f’V + 120fV +...

D—fz f __f”‘|‘_f,m__flv‘|‘_f ...

120"
2
Dcﬁzﬂ+€fi’”—|—l 1+

20"
* One finds: 8D.f; — Dofi—1 — Dofir1 = 6f] — gﬁq
* and therefore: 1 ”
/——8D-—D- — D.f —fY
fi = = @Df; — D¢fiv1 — Defi-1) + 30fi
Read chapter 2.4 for
higher ord.er = — (fics — 8fi—1 + 8fix1 — firn
approximations 12h




Example

For a concrete example of the error due to finite difference approximation we look at

f(x) = exp (iwx) xR
analytically: f(x) = iw exp (iwx)
discretization: Xy = X0 + kh

Je = exp [iw(xo + kh)]

fi = iwexpliw(xo + kh)] = iwfi

Finite difference derivative D.fi = iwf, exp (%) sine (7(‘))

sinc(x)=sin(x)/x thw hw
D_fi = iofi exp (_T) sinc (7)

D fi = iwfisinc(hw)



To study how good the the finite difference derivates are, we look at its

ratio to true derivate:
D_|_fk D_fk ) hw
— ; = SINC{ —
fr 2

fi
D.fy
i

* since [sin(x)|<|x] for all x, the approximation always underestimates the
derivative since f(x) oscillates and the finite difference derivative implies
a linear interpolation.

* for ho being multiples of 27t (or i) the finite differences are zero.
- choose h<<2nt/®

* Easy to see if analytical form known (then one does not need a finite
difference anyway). Typically, even f(x) is not known analytically.
= h has to be chosen carefully

= sinc(hw)




Partial Derivatives

Works similarity by independently discretizing the function on a
regular lattice.
E.g. central difference for mixed derivative of g(x,y):

9 9 1 [ 9 d
a 8—g(x,y) =5 a—g(x,y) — a—g(x,y) } + O(h2)
y oX (iy) x| 0¥ (i+1) (i—1)

U [ gigrj1 — i1

_ 8i+1,j+1 — 8i+1,j—1 n ﬁ(hi)
2h, | 2h, 1)
_ 8i—1j+1 T 8i—lj=1 ﬁ(hz) n ﬁ(hz) (
2hy =14 ’

9

i ig(x ) N 1 gir1j+1— &i+1j-1 — &i—1j+1 + &i—1j—1
dy ox° iy 2h 2h,

There are others methods, e.g., the finite element method (FEM): the function is discretized
in d-dimensional polytopes or simplexes (elements) and interpolated by polynomials within.



Demo & Homework

Planned schedule for following lectures

 Thursday: Numerical integration, more python

* Next week: The Kepler problem — lecture&lab

» 2/4&6: ODEs — lecture&lab

e 2/11&13: Double Pendulum — lecture&lab

e 2/18&20: Molecular dynamics — lecture&Iab

e 2/25&27: 1D stationary heat equation — lecture&lab
« 3/4&6: PDEs — lecture&Ilab (not topic in midterm

* spring break

e 3/18&20: no class

 3/25&27: midterm task + random numbers & Monte Carlo
 4/1&3: Ising model — lecture&Iab

e April: final project assignment and preparation

* 4/24: final project presentations



