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Numerical Differentiation 
Ø Discretization & Finite Differences

Ø Finite Difference Derivatives
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• consider a smooth function f(x) on the finite interval [a,b] 2 R
• Divide interval [a,b] into (N-1) 2 N equally spaced sub-intervals of form [xi,xi+1], 

where x1=a, xN=b, i.e.

• Define

(in general h à hi)
• h should be chosen sufficiently small 

to approximate f(x) [i.e. some interpolation
in [xi,xi+1] should reproduce f(x) within a
required accuracy]

• (in regions of rapid varying of f(x), the grid-
spacing should be smaller when using hi)

18 2 Numerical Differentiation

2.2 Finite Differences

Let us consider a smooth function f .x/ on the finite interval Œa; b! ! R of the real
axis. The interval Œa; b! is divided into N " 1 2 N equally spaced sub-intervals of
the form Œxi; xiC1! where x1 D a, xN D b. Obviously, xi is then given by

xi D aC .i " 1/ b " a
N " 1

; i D 1; : : : ;N : (2.1)

We introduce the distance h between two grid-points xi by:

h D xiC1 " xi D
b " a
N " 1 ; 8i D 1; : : : ;N " 1 : (2.2)

For the sake of a more compact notation we restrict our discussion to equally spaced
grid-points keeping in mind that the extension to arbitrarily spaced grid-points by
replacing h by hi is straight forward and leaves the discussion essentially unchanged.

Note that the number of grid-points and, thus, their distance h, has to be chosen
in such a way that the function f .x/ can be sufficiently well approximated by its
function values f .xi/ as indicated in Fig. 2.1. We understand by sufficiently well
approximated that some interpolation scheme in the interval Œxi; xiC1!will reproduce
the function f .x/ within a required accuracy. In cases where the function is strongly
varying within some sub-interval Œc; d! ! Œa; b! and is slowly varying within

Fig. 2.1 We define equally spaced grid-points xi on a finite interval on the real axis in such a
way that the function f .x/ is sufficiently well approximated by its functional values f .xi/ at these
grid-points
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Derivatives

A. Glatz: Computational Physics 3

• Notation: function f(x) at xi: fi ≡f(xi)
• n-th derivative: [ f(0)(x)=f(x) ]

• for the first derivate of a smooth function we know:

2.2 Finite Differences 19

Œa; b! n Œc; d! it might be advisable to use variable grid-spacing in order to reduce
the computational cost of the procedure.

We introduce the following notation: The function value of f .x/ at the grid-point
xi will be denoted by fi ! f .xi/ and its n-th derivative:

f .n/i ! f .n/.xi/ D
dnf .x/
dxn

ˇ̌
ˇ̌
xDxi

: (2.3)

Furthermore, we define for arbitrary " 2 Œxi; xiC1/

f .n/iC# D f .n/."/ ; (2.4)

where f .0/iC# ! fiC# and # is chosen to give:

" D xi C #h ; # 2 Œ0; 1/ : (2.5)

Let us remember some basics from calculus: The first derivative, denoted f 0.x/
of a function f .x/ which is smooth within the interval Œa; b!, i.e. f .x/ 2 C1Œa; b! for
arbitrary x 2 Œa; b!, is defined as

f 0.x/ WD lim
h!0

f .xC h/" f .x/
h

D lim
h!0

f .x/ " f .x " h/
h

D lim
h!0

f .xC h/" f .x " h/
2h

: (2.6)

However, it is impossible to draw numerically the limit h ! 0 as discussed in
Sect. 1.3, Eq. (1.22). This manifests itself in a non-negligible error due to subtractive
cancellation.

This problem is circumvented by the use of TAYLOR’s theorem. It states that if
there is a function which is .nC 1/-times continuously differentiable on the interval
Œa; b! then f .x/ can be expressed in terms of a series expansion at point x0 2 Œa; b!:

f .x/ D
nX

kD0

f .k/.x0/
kŠ

.x " x0/k C
f .nC1/Œ%.x/!
.nC 1/Š

.x " x0/nC1; 8x 2 Œa; b! : (2.7)

Here, %.x/ takes on a value between x and x0.1 The last term on the right hand side
of Eq. (2.7) is commonly referred to as truncation error. (A more general definition
of this error was given in Sect. 1.1.)

1Note that for x0 D 0 the series expansion (2.7) is referred to as MCLAURIN series.
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First Derivative
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• The mathematical definition: 

• Graphically, as the 
tangential line: 

• Numerically, we can not calculate the limit as h goes to zero, so we 
need to approximate it. [Discreteness of floating point numbers and 
subtractive cancellation]

• Apply directly for a non-zero h leads to the slope of the secant 
curve. 

Numerical*Differen.a.on*
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•  Numerically,*we*can*not*calculate*the*limit*as*h*goes*to*
zero,*so*we*need*to*approximate*it.*

•  Apply*directly*for*a*non?zero*h*leads*to*the*slope*of*the*
secant*curve.*

0

( ) ( )'( ) lim
h

f x h f x
f x

h→

+ −
=

x" x+h"
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Taylor series
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• If the function f(x) is (n-1)-times continuously differentiable on the interval [a, 
b] then it can be expressed in terms of a series expansion at point x0 2  [a,b]:
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truncation error
with z(x) between x and x0

In third order à
fi+1=f(xi+h)
fi-1=f(xi-h)

20 2 Numerical Differentiation

We introduce now the finite difference operators

!Cfi D fiC1 ! fi ; (2.8a)

as the forward difference,

!!fi D fi ! fi!1 ; (2.8b)

as the backward difference, and

!c fi D fiC1 ! fi!1 ; (2.8c)

as the central difference.2 The derivative of f .x/ can be approximated with the help
of TAYLOR’s theorem (2.7). In a first step we consider (restricting to third order in
h)

fiC1 D f .xi/C hf 0.xi/C
h2

2
f 00.xi/C

h3

6
f 000Œ".xi C h/#

D fi C hf 0i C
h2

2
f 00i C h3

6
f 000iC$" ; (2.9a)

with fiC1 " f .xi C h/. Here $" is the fractional part $ which has to be determined
according to ".xi C h/. In analogue we find for fi!1

fi!1 D fi ! hf 0i C
h2

2
f 00i ! h3

6
f 000iC$" : (2.9b)

Solving Eqs. (2.9) for the derivative f 0i leads directly to the definition of finite
difference derivatives.

2.3 Finite Difference Derivatives

We define the finite difference derivative or difference approximations

DCfi D
!Cfi
h

D fiC1 ! fi
h

; (2.10a)

as the forward difference derivative,

2Please note that the symbols !C,!!, and !c in Eqs. (2.8) are linear operators acting on fi. For a
basic introduction to the theory of linear operators see for instance [4, 5].
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Finite Difference Derivatives
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• Difference operators
• Forward difference:
• Backward difference:
• Central difference:

• Forward difference derivative:

• Backward difference derivative:

• Central difference derivative:
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Fig. 2.2 Graphical
illustration of different finite
difference derivatives. The
solid line labeled f 0i
represents the real derivative
for comparison

D!fi D
!!fi
h

D fi ! fi!1
h

; (2.10b)

as the backward difference derivative, and

Dcfi D
!cfi
2h

D fiC1 ! fi!1
2h

; (2.10c)

as the central difference derivative.3 A graphical interpretation of these expressions
is straight forward and is presented in Fig. 2.2.

Using the above definitions (2.10) together with the expansions (2.9) we obtain

f 0i D DCfi ! h
2
f 00i ! h2

6
f 000iC"#

D D!fi C
h
2
f 00i ! h2

6
f 000iC"#

D Dcfi ! h2

6
f 000iC"# : (2.11)

We observe that in the central difference approximation of f 0i the truncation error
scales like h2 while it scales like h in the other two approximations; thus the central

3The central difference derivative is related to the forward and backward difference derivatives via:

Dc D
1

2
.DC C D!/:
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This gives for the Taylor series:

2.3 Finite Difference Derivatives 21

Fig. 2.2 Graphical
illustration of different finite
difference derivatives. The
solid line labeled f 0i
represents the real derivative
for comparison

D!fi D
!!fi
h

D fi ! fi!1
h

; (2.10b)

as the backward difference derivative, and

Dcfi D
!cfi
2h

D fiC1 ! fi!1
2h

; (2.10c)

as the central difference derivative.3 A graphical interpretation of these expressions
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We observe that in the central difference approximation of f 0i the truncation error
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3The central difference derivative is related to the forward and backward difference derivatives via:

Dc D
1

2
.DC C D!/:
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• Truncation Error: introduced in the solution by 
the approximation of the derivative 

• Round-off Error: introduced in the 
computation by the finite number of digits 
used by the computer 

• Solving differential equations is done in 
multiple steps. Therefore, we also have: 
• Local Error: from each term of the equation 
• Global Error: from the accumulation of local 

error 



Truncation errors 
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• Let f(x) = a, and f(x+h) = a+e. 
• Then, as h approaches zero: e<<a. 
• With limited precision on our computer, our 

representation of f(x) ≈ a ≈ f(x+h). 
• We can easily get a random round-off bit as 

the most significant digit in the subtraction. 
• Dividing by h, leads to a very wrong answer for 

f ’(x). 



Error trade-off
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Error trade-off*

A.*Glatz:*Computa.onal*Methods*in**Condensed*Ma<er*Physics*?*Introduc.on* 6*

•  Using*a*smaller*step*size*reduces*trunca.on*error.*
•  However,*it*increases*the*round?off*error.*
•  Trade*off/diminishing*returns*occurs:*Always*think*and*test!*

* Log*error*

Log*step*size*

Trunca.on*error*

Round*off*error*

Total*error* Point*of**
diminishing*
returns*
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• Forward and Backward derivates use two points, Central 
three points ( fi cancels).

• Using higher order terms in the Taylor series results in 
smaller truncation errors:

• One finds:
• and therefore: 

22 2 Numerical Differentiation

difference approximation should have the smallest methodological error. Note that
the error is usually not dominated by the derivatives of f .x/ since we assumed that
f .x/ is a smooth function and sufficiently well approximated on the grid within
Œa; b!. Furthermore we have to emphasize that the central difference approximation
is essentially a three point approximation, including fi!1, fi and fiC1, although fi
cancels. Thus, we can improve our approximation by taking even more grid-points
into account. For instance, we could combine the above finite difference derivatives.
Let us prepare this step by expanding Eqs. (2.9) to higher order derivatives. We then
obtain for the forward difference derivative

DCfi D f 0i C
h
2
f 00i C h2

6
f 000i C h3

24
f IVi C h4

120
f Vi C : : : ; (2.12)

for the backward difference derivative

D!fi D f 0i ! h
2
f 00i C h2

6
f 000i ! h3

24
f IVi C h4

120
f Vi " : : : ; (2.13)

and, finally, for the central difference derivative

Dcfi D f 0i C
h2

6
f 000i C h4

120
f Vi C : : : : (2.14)

In order to improve the method we have to combine DCfi, D!fi and Dcfi from
different grid-points in such a way that at least the terms proportional to h2 cancel.
This can be achieved by observing that4

8Dcfi ! Dcfi!1 ! DcfiC1 D 6f 0i ! h4

5
f ViC"# ; (2.15)

which gives

f 0i D
1

6
.8Dcfi ! DcfiC1 ! Dcfi!1/C

h4

30
f Vi

D 1

12h
. fi!2 ! 8fi!1 C 8fiC1 ! fiC2/C

h4

30
f Vi : (2.16)

Note that this simple combination yields an improvement of two orders in h ! One
can even improve the approximation in a similar fashion by simply calculating the
derivative from even more points, for instance fi˙3.

4Please note that the TAYLOR expansion of .Dcfi!1CDcfiC1/=2 D . fiC2!fi!2/=.4h/ is equivalent
to the expansion (2.14) of Dcfi with h replaced by 2h.
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Read chapter 2.4 for 
higher order 

approximations



Example

A. Glatz: Computational Physics 12

For a concrete example of the error due to finite difference approximation we look at

26 2 Numerical Differentiation

In particular, we obtain for the central difference derivative

f 0i D
fiC1 ! fi!1

2h
C O.h2/ ; (2.33)

and

f 00i D fiC1 ! 2fi C fi!1
h2

C O.h2/ : (2.34)

Here, O.h2/ indicates that this term is of the order of h2 and we get the important
result that the truncation error is of the order O.h2/.8

2.5 Concluding Discussion

First of all, although Eq. (2.27) allows to approximate a derivative of any order k
arbitrarily close, it is still an infinite series which leaves us with the decision at
which order to truncate. This choice will highly depend on the choice of h which in
turn depends on the function we would like to differentiate. Consider, for instance,
the periodic function

f .x/ D exp .i!x/ ; (2.35)

where !; x 2 R and i is the imaginary unit with i2 D !1. Its first derivative is

f 0.x/ D i! exp .i!x/ : (2.36)

We now introduce grid-points by

xk D x0 C kh ; (2.37)

where h is the grid-spacing and x0 is some finite starting point on the real axis.
Accordingly,

fk D exp Œi!.x0 C kh/! ; (2.38)

8The leading order of the truncation error can be determined by inserting the dominant contribution
of Eqs. (2.28) and (2.29) into the remainder of Eqs. (2.31) and (2.32), respectively. For instance,
it follows from Eq. (2.29) that " " O.1/ and from Eq. (2.28) that ıc " O.h/ and, hence, we
find with the help of Eq. (2.31) that "ı3c=h " O.h2/. In analogue, we obtain from Eq. (2.32) that
ı4c=h

2 " O.h2/.

x 2 R

analytically:

discretization:
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and the exact value of the first derivative is

f 0k D i! exp Œi!.x0 C kh/! D i!fk : (2.39)

We calculate the forward, backward, and central difference derivatives according to
Eqs. (2.10) and obtain

DCfk D i!fk exp
!
ih!
2

"
sinc

!
h!
2

"
; (2.40a)

with sinc.x/ D sin.x/=x and

D!fk D i!fk exp
!

! ih!
2

"
sinc

!
h!
2

"
; (2.40b)

and

Dcfk D i!fksinc.h!/ : (2.40c)

We divide the approximate derivatives by the true value (2.39) and take the modulus.
We get

ˇ̌
ˇ̌DCfk

f 0k

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌D!fk

f 0k

ˇ̌
ˇ̌ D sinc

!
h!
2

"
; (2.41)

and
ˇ̌
ˇ̌Dcfk
f 0k

ˇ̌
ˇ̌ D sinc.h!/ : (2.42)

Since j sin.x/j " jxj, 8x 2 R we obtain that in all three cases this ratio is less
than one independent of h, unless ! D 0. (Please keep in mind that sinc.x/ ! 1
as x ! 0.) Hence, the first order finite difference approximations underestimate
the true value of the derivative. The reason is easily found: f .x/ oscillates with
frequency ! while the finite difference derivatives applied here approximate the
derivative linearly. Higher order corrections will, of course, improve the approxi-
mation significantly. Furthermore, we observe that the one-sided finite difference
derivatives (2.40a) and (2.40b) are exactly zero if h! D 2n" , n 2 N, i.e. if the grid-
spacing h matches a multiple of the frequency 2"! of the function f .x/. The same
occurs when central derivatives (2.40c) are used, but now for h! D "n. This is not
really a problem in our example because we choose the grid-spacing h # 2"=! in
order to approximate the function f .x/ sufficiently well. However, in many cases the
analytic form of the function is unknown and we only have its representation on the
grid. In this case one has to check carefully by changing h whether the function is
periodic or not.

Finite difference derivative
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as x ! 0.) Hence, the first order finite difference approximations underestimate
the true value of the derivative. The reason is easily found: f .x/ oscillates with
frequency ! while the finite difference derivatives applied here approximate the
derivative linearly. Higher order corrections will, of course, improve the approxi-
mation significantly. Furthermore, we observe that the one-sided finite difference
derivatives (2.40a) and (2.40b) are exactly zero if h! D 2n" , n 2 N, i.e. if the grid-
spacing h matches a multiple of the frequency 2"! of the function f .x/. The same
occurs when central derivatives (2.40c) are used, but now for h! D "n. This is not
really a problem in our example because we choose the grid-spacing h # 2"=! in
order to approximate the function f .x/ sufficiently well. However, in many cases the
analytic form of the function is unknown and we only have its representation on the
grid. In this case one has to check carefully by changing h whether the function is
periodic or not.

2.5 Concluding Discussion 27

and the exact value of the first derivative is

f 0k D i! exp Œi!.x0 C kh/! D i!fk : (2.39)

We calculate the forward, backward, and central difference derivatives according to
Eqs. (2.10) and obtain

DCfk D i!fk exp
!
ih!
2

"
sinc

!
h!
2

"
; (2.40a)

with sinc.x/ D sin.x/=x and

D!fk D i!fk exp
!

! ih!
2

"
sinc

!
h!
2

"
; (2.40b)

and

Dcfk D i!fksinc.h!/ : (2.40c)

We divide the approximate derivatives by the true value (2.39) and take the modulus.
We get
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ˇ̌D!fk

f 0k

ˇ̌
ˇ̌ D sinc

!
h!
2

"
; (2.41)

and
ˇ̌
ˇ̌Dcfk
f 0k

ˇ̌
ˇ̌ D sinc.h!/ : (2.42)

Since j sin.x/j " jxj, 8x 2 R we obtain that in all three cases this ratio is less
than one independent of h, unless ! D 0. (Please keep in mind that sinc.x/ ! 1
as x ! 0.) Hence, the first order finite difference approximations underestimate
the true value of the derivative. The reason is easily found: f .x/ oscillates with
frequency ! while the finite difference derivatives applied here approximate the
derivative linearly. Higher order corrections will, of course, improve the approxi-
mation significantly. Furthermore, we observe that the one-sided finite difference
derivatives (2.40a) and (2.40b) are exactly zero if h! D 2n" , n 2 N, i.e. if the grid-
spacing h matches a multiple of the frequency 2"! of the function f .x/. The same
occurs when central derivatives (2.40c) are used, but now for h! D "n. This is not
really a problem in our example because we choose the grid-spacing h # 2"=! in
order to approximate the function f .x/ sufficiently well. However, in many cases the
analytic form of the function is unknown and we only have its representation on the
grid. In this case one has to check carefully by changing h whether the function is
periodic or not.

sinc(x)=sin(x)/x
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To study how good the the finite difference derivates are, we look at its 
ratio to true derivate:
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ˇ̌ D sinc.h!/ : (2.42)

Since j sin.x/j " jxj, 8x 2 R we obtain that in all three cases this ratio is less
than one independent of h, unless ! D 0. (Please keep in mind that sinc.x/ ! 1
as x ! 0.) Hence, the first order finite difference approximations underestimate
the true value of the derivative. The reason is easily found: f .x/ oscillates with
frequency ! while the finite difference derivatives applied here approximate the
derivative linearly. Higher order corrections will, of course, improve the approxi-
mation significantly. Furthermore, we observe that the one-sided finite difference
derivatives (2.40a) and (2.40b) are exactly zero if h! D 2n" , n 2 N, i.e. if the grid-
spacing h matches a multiple of the frequency 2"! of the function f .x/. The same
occurs when central derivatives (2.40c) are used, but now for h! D "n. This is not
really a problem in our example because we choose the grid-spacing h # 2"=! in
order to approximate the function f .x/ sufficiently well. However, in many cases the
analytic form of the function is unknown and we only have its representation on the
grid. In this case one has to check carefully by changing h whether the function is
periodic or not.

2.5 Concluding Discussion 27

and the exact value of the first derivative is

f 0k D i! exp Œi!.x0 C kh/! D i!fk : (2.39)

We calculate the forward, backward, and central difference derivatives according to
Eqs. (2.10) and obtain

DCfk D i!fk exp
!
ih!
2

"
sinc

!
h!
2

"
; (2.40a)

with sinc.x/ D sin.x/=x and

D!fk D i!fk exp
!

! ih!
2

"
sinc

!
h!
2

"
; (2.40b)

and

Dcfk D i!fksinc.h!/ : (2.40c)

We divide the approximate derivatives by the true value (2.39) and take the modulus.
We get

ˇ̌
ˇ̌DCfk

f 0k

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌D!fk

f 0k

ˇ̌
ˇ̌ D sinc

!
h!
2

"
; (2.41)

and
ˇ̌
ˇ̌Dcfk
f 0k

ˇ̌
ˇ̌ D sinc.h!/ : (2.42)

Since j sin.x/j " jxj, 8x 2 R we obtain that in all three cases this ratio is less
than one independent of h, unless ! D 0. (Please keep in mind that sinc.x/ ! 1
as x ! 0.) Hence, the first order finite difference approximations underestimate
the true value of the derivative. The reason is easily found: f .x/ oscillates with
frequency ! while the finite difference derivatives applied here approximate the
derivative linearly. Higher order corrections will, of course, improve the approxi-
mation significantly. Furthermore, we observe that the one-sided finite difference
derivatives (2.40a) and (2.40b) are exactly zero if h! D 2n" , n 2 N, i.e. if the grid-
spacing h matches a multiple of the frequency 2"! of the function f .x/. The same
occurs when central derivatives (2.40c) are used, but now for h! D "n. This is not
really a problem in our example because we choose the grid-spacing h # 2"=! in
order to approximate the function f .x/ sufficiently well. However, in many cases the
analytic form of the function is unknown and we only have its representation on the
grid. In this case one has to check carefully by changing h whether the function is
periodic or not.

• since |sin(x)|≤|x| for all x, the approximation always underestimates the 
derivative since f(x) oscillates and the finite difference derivative implies 
a linear interpolation.

• for hw being multiples of 2p (or p) the finite differences are zero.
à choose h<<2p/w

• Easy to see if analytical form known (then one does not need a finite 
difference anyway). Typically, even f(x) is not known analytically.
à h has to be chosen carefully
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Works similarity by independently discretizing the function on a 
regular lattice. 
E.g. central difference for mixed derivative of g(x,y):

28 2 Numerical Differentiation

We discuss, finally, how to approximate partial derivatives of functions which
depend on more than one variable. Basically this can be achieved by independently
discretisizing the function of interest in each particular variable and then by defining
the corresponding finite difference derivatives. We will briefly discuss the case of
two variables and the extension to evenmore variables is straight forward.We regard
a function g.x; y/ where .x; y/ 2 Œa; b! ! Œc; d!. We denote the grid-spacing in x-
direction by hx and in y-direction by hy. The evaluation of derivatives of the form
@n

@xn g.x; y/ or
@n

@yn g.x; y/ for arbitrary n are approximated with the help of the schemes
discussed above, only the respective grid-spacing has to be accounted for. We will
now briefly discuss mixed partial derivatives, in particular the derivative @2

@x@yg.x; y/.
Higher orders can be easily obtained in the same fashion. Here, we will restrict to
the case of the central difference derivative. Again, the extension to the other two
forms of derivatives is straight forward. We would like to approximate the derivative
at the point .aC ihx; cC jhy/, which will be abbreviated by .i; j/. Hence, we compute

@

@y
@

@x
g.x; y/

ˇ̌
ˇ̌
.i;j/

D 1

2hx

"
@

@y
g.x; y/

ˇ̌
ˇ̌
.iC1;j/

" @

@y
g.x; y/

ˇ̌
ˇ̌
.i!1;j/

#
C O.h2x/

D 1

2hx

"
giC1;jC1 " giC1;j!1

2hy
C O.h2y/

ˇ̌
ˇ̌
.iC1;j/

" gi!1;jC1 " gi!1;j!1
2hy

" O.h2y/

ˇ̌
ˇ̌
.i!1;j/

#
C O.h2x/ ; (2.43)

where we made use of the notation gi;j # g.xi; yj/. Neglecting higher order
contributions yields

@

@y
@

@x
g.x; y/

ˇ̌
ˇ̌
.i;j/

$ 1

2hx

giC1;jC1 " giC1;j!1 " gi!1;jC1 C gi!1;j!1
2hy

: (2.44)

This simple approximation is easily improved with the help of methods developed
in the previous sections.

It should be noted that there are also other methods to approximate derivatives.
One of the most powerful methods, is the method of finite elements [8]. The
conceptual difference to the method of finite differences is that one divides the
domain in finite sub-domains (elements) rather than by replacing these by sets of
discrete grid-points. The function of interest, say g.x; y/, is then replacedwithin each
element by an interpolating polynomial. However, this method is quite complex
and definitely beyond the scope of this book. Another interesting method, which is
particularly useful for the solution of hyperbolic differential equations, is the method
of finite volumes. The interested reader is referred to the book by R. J. LEVEQUE

[9].

à

28 2 Numerical Differentiation

We discuss, finally, how to approximate partial derivatives of functions which
depend on more than one variable. Basically this can be achieved by independently
discretisizing the function of interest in each particular variable and then by defining
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discussed above, only the respective grid-spacing has to be accounted for. We will
now briefly discuss mixed partial derivatives, in particular the derivative @2

@x@yg.x; y/.
Higher orders can be easily obtained in the same fashion. Here, we will restrict to
the case of the central difference derivative. Again, the extension to the other two
forms of derivatives is straight forward. We would like to approximate the derivative
at the point .aC ihx; cC jhy/, which will be abbreviated by .i; j/. Hence, we compute
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#
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where we made use of the notation gi;j # g.xi; yj/. Neglecting higher order
contributions yields

@

@y
@

@x
g.x; y/

ˇ̌
ˇ̌
.i;j/

$ 1

2hx

giC1;jC1 " giC1;j!1 " gi!1;jC1 C gi!1;j!1
2hy

: (2.44)

This simple approximation is easily improved with the help of methods developed
in the previous sections.

It should be noted that there are also other methods to approximate derivatives.
One of the most powerful methods, is the method of finite elements [8]. The
conceptual difference to the method of finite differences is that one divides the
domain in finite sub-domains (elements) rather than by replacing these by sets of
discrete grid-points. The function of interest, say g.x; y/, is then replacedwithin each
element by an interpolating polynomial. However, this method is quite complex
and definitely beyond the scope of this book. Another interesting method, which is
particularly useful for the solution of hyperbolic differential equations, is the method
of finite volumes. The interested reader is referred to the book by R. J. LEVEQUE

[9].

There are others methods, e.g., the finite element method (FEM): the function is discretized 
in d-dimensional polytopes or simplexes (elements) and interpolated by polynomials within.



Planned schedule for following lectures
• Thursday: Numerical integration, more python
• Next week: The Kepler problem – lecture&lab
• 2/4&6: ODEs – lecture&lab
• 2/11&13: Double Pendulum – lecture&lab
• 2/18&20: Molecular dynamics – lecture&lab
• 2/25&27: 1D stationary heat equation – lecture&lab
• 3/4&6: PDEs – lecture&lab (not topic in midterm
• spring break
• 3/18&20: no class
• 3/25&27: midterm task + random numbers & Monte Carlo
• 4/1&3: Ising model – lecture&lab
• April: final project assignment and preparation
• 4/24: final project presentations

Demo & Homework
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