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(Numerical) Quadrature

* |In general, a numerical integration is the approximation

of a definite integration by a “weighted” sum of
function values at discretized points within the interval

of integration. AY
A
o, R
[ fx)de~Ywf(x) .
i=0
a b ?

where @ is the weight depending on the integration schemes used,
and f (x;) is the function value evaluated at the given point x; €[a,b]



Methods

* Rectangular rule
— Lower and Upper sums
— Midpoint sums

* Trapezoidal rule
 Simpson’s rule

- Newton-Cotes rules

* Gauss-Legendre quadrature

* (Monte-Carlo integration)



Riemann integrals

Consider a smooth function f(x) in [a,b], then the Riemann integral is defined as:

N
b—a b—a
N ;f(a—kl N )

b
/ dxf(x) = Nll)m

b
Discretization of [a,b] in equally space grid-points x; yields / dx f(x) ~ ]

« [ A

b
[ o =3 [ e

i=1 YN

Note

and therefore for an elemental area

aer o) ~ i . RN

Xi




Error of discretization

The error of this approximation can be found by expanding f(x) in a Taylor series

e = [ el -]

= fih + O(h?).

Where we used the mean value theorem for a continuous function f(x) in [a,b]:

b
[ &f() = (b—af @) forsome L in [ab]

The procedure above corresponds to the forward difference approach, similarly for
backward:

b
/ axf ) = SV + o)



Central difference: Rectangular rule

Accordingly, we get the following expression for the central difference, which has
higher accuracy: £(x)

Xit1 dxf(x) = /:Hrl dx{fiJr% + (x—xi+%)fi/+

h3 /!
= Mipd + S7lite

_\\

l.e. the error is of order h3 (instead of h?) %

b N—1
/ dxf(x) = h Zflur% + O Rectangular rule or Midpoint rule
“ i=1

Note, the boundary points a and b of the integration interval do not enter:
Example of an open integration rule. If the end-points are used the method is called
closed.



Lower and Upper Sums

The lower and upper sums are
defined as: 1
N 0
Lower: e _ . i
E o ;(xk xk_l) xk_112£<a:k f(x)
N
Upper: it — Z(:{;k —Zk_1)- sup f(x)
E—1 T 1 <<l

Define lower and upper bounds for the real integral, but these are impractical because
of “inf” and “sup”.

More practical is the rectangular rule.

A. Glatz: Computational Physics 7



Bounding approximations

... T

x0 x1 x2 x3 x4

A. Glatz: Computational Physics



Can be refined

ﬁ-
x0 x3 x5 x7 x9

A. Glatz: Computational Physics



Can be refined

ﬁ :
x0 x5 x7 x9 x11

A. Glatz: Computational Physics



Trapezoidal rule

The rectangular rule can be made more
accurate by using trapezoids to replace the
rectangles as shown.

A linear approximation of the function locally
/ sometimes work much better than using the
averaged value like the rectangular rule does.

flx) 4

Elemental area - dxf(x) ~ g(fi + fi+1)

Xi

., Trapezoidal rule: (closed)
X=a X:b b h N—1
f / S TR N
a i=1
In

:h(%+fz+...+fzv_1+5)

* Needs function values only at x; " N—1
° i i 3
Error is, like rectangular rule, of order h (fi +fv) +h Zfi
i=2

2



Simpson (1/3) rule

As we saw for the finite difference approximation of derivatives, the accuracy can be
improved by using more gird points
There we expand f(x) around the midpoint x; of integration interval [x;;,X;,/]

(x — xl)2 11

T

Xit1 Xit1
aes) = | P+@xw+

Xi—1 Xi—1

(x xl)3f/// _|_ ]

h?
= 2hf; + gfi” + O(W).
For the second derivate at x; we use f; ’=(f.. ;-2f:+f:. )/h?

W) = W s — 2 i) + )

Xi—1

1 4 1
=h (gfi—l + gfi + §ﬁ+1) + O(W). Simpson rule

This is a three point rule and has error h> ! (lucky cancellation of third derivate)



The composite form for interval [a,b] with even N follows from:

/abdxf(x)=fx:zdxf(x)Jr/;dxf(x)+...+/x:N2dxf(x)

we get (x;=a+ih)

b h
/ dxf(x) = 3 (fo + 4fi + 26 + 4 + ... + 2fv—2 + 4fv—1 +fv) + O().

This expression is exact for polynomials of degree n<3 since the first term in the
error expansion involves the fourth derivative.

If the integrand is satisfactorily reproduceable by a polynomial of degree three
or less, the Simpson rule gives almost exact estimates, independent of h.



Example: Simpson’s rule for x3

_lix3 dle(b“—a“) =i(b—a)(b3+b2a+ba2+a3)
4
=l(b—a %b3+lb3+b2a+ba2+la3+%a3j
4 30 3 37 3
=l(b—a %b3+l(b+a)3+%a3j
4 3 3 3
3
gb3+§(b+aj +ga3)
3 30 2 3

A. Glatz: Computational Physics 14



Higher-order approximations

For four-point approximations we get the Simpson (3/8) rule:

Xit3 3

h
dxf(x) = = (fi + 3fix1 + 3fit2 + fir3) + OF)

8

Xi

five points: s 14 64 24 64 14 .
_ o i “=* bl - (6)
Bode’s rule: /a:1 f@)dz = h [45 Jit 45 2+ 45 Js+ 45 Jat 45 Is + O )

Remarks:

e Simpson’s 1/3 rule is exact for polynomials up to order 3

* Simpson’s 3/8 rule is also exact for polynomials up to order 3!
(no “lucky cancellation”)

 Bode’s rule is exact for polynomials up to order 5!



General: Newton-Cotes rules

The previous approximations can be formalized as follows:
Define the Lagrange interpolation polynomial p,_.;(x) of degree n-1 to a function

J(x):

n

n
= (n—1) | LV = T 2=
pn_l(x) — ' lﬁLj (X) with j (x) 1_[ Xj — Xy
]=

where p,,_;(x;)=f;

With this, any smooth function f(x) can be written as

O )]
n!

f(X) :pn—l(x) | (X—Xl)(X—Xz) o (X—Xn)
Neglecting the second term and integrating over the n grid-points the Lagrange
polynomial only, one obtains the closed n-point Newton-Cotes formulas.

One can also define open Newton-Cotes rule (n=1 gives the rectangular rule), but these

are typically inferior to Gauss-Legendre quadratures (which are open). see textbook
A. Glatz: Computational Physics
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Example: n=2

For n=2, the Lagrange polynomial p;(x) to f(x) is

pi(x) = ALY () + ALY (x)

X — X2 X — X1

+ /2
X1 — X2 X2 — X1

= % x(f2 — f1) — x1f2 + xof1]

X2

And therefore

X2 1 2
[ armi = 5 | 56—+ stoaf — )|

h
= E[fz + fil .

which is the trapezoidal rule.
For n=3 one get Simpson’s (1/3) rule,
for n=4 Simpson’s 3/8 rule, and for n=5 Bode’s rule



Adaptive algorithms

Much better than to predefine the number of sub-intervals, N,
is to refine the integration rule until some specified degree of
accuracy has been achieved.

#include <math.h>
#define EPS 1.0e-6
#define JMAX 20

Example:
adaptive float gsimp(float (*func)(float), float a, float b)

P Returns the integral of the function func from a to b. The parameters EPS can be set to the
refinement of desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum allowed

. number of steps. Integration is performed by Simpson’s rule.
trapezoidal rule {
. float trapzd(float (*func)(float), float a, float b, int n);

(eqUIValent to void nrerror(char error_text[]);
Simpson’s 1/3 rule) int jj;

float s,st,ost=0.0,0s=0.0;

for (j=1;j<=JMAX;j++) {
st=trapzd(func,a,b,j);
s=(4.0*st-ost)/3.0; Compare equation (4.2.4), above.
if (j > 5) Avoid spurious early convergence.
if (fabs(s-os) < EPS*fabs(os) ||
(s == 0.0 && os == 0.0)) return s;

os=s;
ost=st;

}

nrerror ("Too many steps in routine qsimp");

return 0.0; Never get here.



Legendre polynomials

Orthogonal Legendre polynomials P,(x) are solutions of the Legendre differential

equation:

(1 —x%) P} (x) — 2xPy(x) + (£ + 1)Py(x) = 0

0
k(k+1)—£(+1)
and are given b Po(x) = ay ¢ x* i a = a
g y (%) ; kX with ko S
Properties
* foreven/, P/(x)is even, and odd for odd /,
* for k=/, the coefficients are zero
* Pjx)is of degree/
* fulfills orthonormality:
1 2
dxP;(x)Py (x) = Sopr
/_1 ((X)Py (x) o
° Po(X)zl, P](X)zx 1 dﬁ 5 ),
* can be written as (Rodrigues’ formula):  Py(x) = (x — 1)

260! dxt



Gauss-Legendre Quadrature

, , , b—a (b—a b+ a
Define the linear transformation of f(x): F(x) = f X+

2 2 )
. M . b 1

Now we use polynomial approximation (if possible): F(x) X Poan—1 (x)
*  pPyn.1(X) is some polynomial of degree 2n-1

* the erroris proportional to F(2n)(x).

* If p,,.1(x) is explicitly given, we can use Newton-Cotes formulas

 otherwise, we write: 1 n
/ dxF(x) = ) wiF(x;)
—1 i=1

with some weights ®; and grid-points x;, which are undetermined!



Weights and grid points

Task:
find weights m; and grid-points x; such that the integral is best approximated.

e start with the decomposition: pzn—l(x) — pn—l(X)Pn(X) + qn_l(x)

where p&q are a polynomials of degree n-1, P,(x) the Legendre polynomial of
degree n n—1
Since p is a polynomial, we can also write: | (x) = Zaipi(x)
i=0
Using orthonormality we get:

1 n—1 1 1 1
/ dx pop—1(x) = Zai/ dx P;(x)Pp(x) —|—/ dx gp—1(x) :/ dx g,—1(x) .
—1 — 71 —1 —1
Since P, (x) is a Legendre polynomial, it has n zeros in the interval [-1,1], such that

DPon—1 (X)) = gn—1(x;) where x; are the zeros of P, (x), which will be our grid points

Note, these zeros are independent of F(x) and therefore p,,_,(x) !



Expanding also q in terms of Legendre polynomials: o1 (x) = Zb.p.(x)
we get:

n—1
Pan—1(x) =) bePelx) . i=1,....n

k=0
n—1 I
Pi = Z kaki and p;=F; inverse matrix
of P={P;.} which

k=0
n / is non-singular
linear equation system forb,: b = E F; [P_l]ik

=1
1 1 n—1 1
then we can write: / dx F(x) / dx pon_i (x) = Zbk/ dx P (x)
—1 —1 k=0 —1

2
2k +1

1 1
and use trick [Py(x)=1]: / dx Pr(x) = / dx Pr(x)Po(x) = 00 = 20k0
—1 —1



1 n
which gives us / dx F(x) ~ 2by = ZZF,- [P_l]io
—1 i=1

. —1 2
defining w; = 2 [P ]iO one can show that @i =

(1—x2) [PL(x)]’

1 n
get finally get: / dxF(x) ~ Za),-F,-
—1 i=1

Notes:

the Gauss-Legendre quadrature is exact for polynomials of degree 2n-1!

x; and w; are independent of F(x) and can be tabled

the grid-points x; are symmetrically distributed around 0 and have the same
weights

the Gauss-Legendre quadrature is an open method: +1 are not grid-points
higher accuracy and convergence than comparable Newton-Cotes

A. Glatz: Computational Physics 24



Example of deriving GQ

 Here we concentrate on N=1 (composite rules are straight forward)

* This leads to 4 unknowns: c;, ¢,, X7, and x,
— two unknown weights (c;, ¢,)
— two unknown sampling points (x;, x,)
* we need four known values for the equation.
 If we had these, we could then attempt to solve for the four unknownes.

* Let’s with polynomials
* Forn=2, let’s look at: 1, x, x, x3

A. Glatz: Computational Physics
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e Recalling the formula:

— Constant
* flx)=1
— Linear
* flx)=x
— Quadratic
* flx)=x
— Cubic
* flx)=x°

A. Glatz: Computational Physics 26



2"4 order GQ points/weights

Solving these non-linear equations gives:

- Gauss-Legendre formula:

—> This is exact for all polynomials up to and including degree 3!

A. Glatz: Computational Physics 27
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3rd order GQ
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e Solution of these equations gives

* Produces the three-point Gauss-Legendre formula

— Exact for polynomials up to and including degree 5

A. Glatz: Computational Physics
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GQ weights and Gauss points

n 2 3 a4 5 6
C; 1.0 0.5555555556 0.3478548451 0.2369268850 0.1713245
1.0 0.8888888889 0.6521451549 0.4786286705 0.3607616
0.5555555556 0.6521451549 0.5688888889 0.4679139
0.3478548451 0.4786286705 0.4679139
0.2369268850 0.3607616
0.1713245
—0.5773502692 —0.7745966692 —-08611363116 —09061798459 —-0.932469514
0.5773502692 0.0000000000  —0.3399810436 —0.5384693101 —0.661209386
i 0.7745966692 0.3399810436 0.0000000000  —0.238619186
08611363116 0.5384693101 0.238619186
0.9061798459 0.661209386

A. Glatz: Computational Physics
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.. even more

TABLE 5.5 Gaussian Quadrature Nodes and Weights

n

(™

w(®

—

16

0.0000000000000000E+00

+0.5773502691896257E+00
+0.3399810435848563E+00
+0.8611363115940526E+00

+0.1834346424956498E+00
+0.5255324099163290E+00
+0.7966664774136268E+00
+0.9602898564975362E+00

+0.9501250983763744E-01

+0.2816035507792589E+00
+0.4580167776572274E+00
+0.6178762444026438E+00
+0.7554044083550030E+00
+0.8656312023878318E+00
+0.9445750230732326E+00
+0.9894009349916499E+00

0.2000000000000000E+01

(1)0000000000000000E+00
0.6521451548625464E-+00
0.3478548451374476E+00

0.3626837833783620E+00
0.3137066458778874E+00
0.2223810344533745E+00
0.1012285362903697E+00

0.1894506104550685E+00
0.1826034150449236E+00
0.1691565193950024E+00
0.1495959888165733E+00
0.1246289712555339E+00
0.9515851168249290E—01
0.6225352393864778E-01
0.2715245941175185E-01
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GQ summary

* Requires function evaluations at non-uniformly spaced
points within the integration interval

— not appropriate for cases where the function is
unknown

— not suited for dealing with tabulated data that appear
in many engineering problems

* |If the function is known, its efficiency can be a decided
advantage

A. Glatz: Computational Physics 32



Summary Example

1

: dx

Consider I = / = In(3) —In(1) ~ 1.09861
-1 X + 2

Approximations

* rectangular rule: g = 1-% =05
. idal rule: /g (LU L Y ¢
trapezoidal rule: r = 2(1 ;)=3="1
1/1 4 1 10
e Gi : Fs=-[-+-+-)=—==1.111...
Simpson rule: 5= 3 (1 o+ 3) 5
nd . 1 1
* Gauss-Legendre 2" order: .7 = + = 1.090909. ..



Demo: adaptive Simpson

Numerical recipes: “with the exception of two of the most modest
formulas (“extended trapezoidal rule,” and “extended midpoint
rule,”), the classical formulas are almost entirely useless.

They are museum pieces, but beautiful ones.”




