
Computational Physics

Numerical Integration 
Ø Rectangular rule
Ø Trapezoidal rule
Ø Simpson rule
Ø Newton-Cotes rules
Ø Gauss-Legendre quadrature



(Numerical) Quadrature
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• In general, a numerical integration is the approximation 
of a definite integration by a “weighted” sum of 
function values at discretized points within the interval 
of integration.

f (x)dx
a

b
∫ ≈ wi f (xi )

i=0

N

∑

where wi is the weight depending on the integration schemes used, 
and f (xi) is the function value evaluated at the given point xi ∈ [a,b]



Methods
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• Rectangular rule
– Lower and Upper sums
– Midpoint sums

• Trapezoidal rule
• Simpson’s rule
à Newton-Cotes rules
• Gauss-Legendre quadrature

• (Monte-Carlo integration)



Riemann integrals
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32 3 Numerical Integration

3.2 Rectangular Rule

The straight forward approach to numerical integration is to employ the concept of
finite differences developed in Sect. 2.2.We regard a smooth function f .x/within the
interval Œa; b!, i.e. f .x/ 2 C1Œa; b!. The RIEMANN definition of the proper integral
of f .x/ from a to b states that:

Z b

a
dx f .x/ D lim

N!1
b ! a
N

NX

iD0
f
!
aC i

b ! a
N

"
: (3.2)

We approximate the right hand side of this relation using equally spaced grid-points
xi 2 Œa; b! according to Eq. (2.1) and find

Z b

a
dx f .x/ " h

N!1X

iD1
fi: (3.3)

It is clear that the quality of this approach strongly depends on the discretization
chosen, i.e. on the values of xi as illustrated schematically in Fig. 3.1. Again, a non-
uniform grid may be of advantage. We can estimate the error of this approximation
by expanding f .x/ into a TAYLOR series.

We note that

Z b

a
dx f .x/ D

N!1X

iD1

Z xiC1

xi
dx f .x/; (3.4)

Fig. 3.1 Illustration of the
numerical approximation of a
proper integral according to
Eq. (3.3)

32 3 Numerical Integration

3.2 Rectangular Rule

The straight forward approach to numerical integration is to employ the concept of
finite differences developed in Sect. 2.2.We regard a smooth function f .x/within the
interval Œa; b!, i.e. f .x/ 2 C1Œa; b!. The RIEMANN definition of the proper integral
of f .x/ from a to b states that:

Z b

a
dx f .x/ D lim

N!1
b ! a
N

NX

iD0
f
!
aC i

b ! a
N

"
: (3.2)

We approximate the right hand side of this relation using equally spaced grid-points
xi 2 Œa; b! according to Eq. (2.1) and find

Z b

a
dx f .x/ " h

N!1X

iD1
fi: (3.3)

It is clear that the quality of this approach strongly depends on the discretization
chosen, i.e. on the values of xi as illustrated schematically in Fig. 3.1. Again, a non-
uniform grid may be of advantage. We can estimate the error of this approximation
by expanding f .x/ into a TAYLOR series.

We note that

Z b

a
dx f .x/ D

N!1X

iD1

Z xiC1

xi
dx f .x/; (3.4)

Fig. 3.1 Illustration of the
numerical approximation of a
proper integral according to
Eq. (3.3)

32 3 Numerical Integration

3.2 Rectangular Rule

The straight forward approach to numerical integration is to employ the concept of
finite differences developed in Sect. 2.2.We regard a smooth function f .x/within the
interval Œa; b!, i.e. f .x/ 2 C1Œa; b!. The RIEMANN definition of the proper integral
of f .x/ from a to b states that:

Z b

a
dx f .x/ D lim

N!1
b ! a
N

NX

iD0
f
!
aC i

b ! a
N

"
: (3.2)

We approximate the right hand side of this relation using equally spaced grid-points
xi 2 Œa; b! according to Eq. (2.1) and find

Z b

a
dx f .x/ " h

N!1X

iD1
fi: (3.3)

It is clear that the quality of this approach strongly depends on the discretization
chosen, i.e. on the values of xi as illustrated schematically in Fig. 3.1. Again, a non-
uniform grid may be of advantage. We can estimate the error of this approximation
by expanding f .x/ into a TAYLOR series.

We note that

Z b

a
dx f .x/ D

N!1X

iD1

Z xiC1

xi
dx f .x/; (3.4)

Fig. 3.1 Illustration of the
numerical approximation of a
proper integral according to
Eq. (3.3)

32 3 Numerical Integration

3.2 Rectangular Rule

The straight forward approach to numerical integration is to employ the concept of
finite differences developed in Sect. 2.2.We regard a smooth function f .x/within the
interval Œa; b!, i.e. f .x/ 2 C1Œa; b!. The RIEMANN definition of the proper integral
of f .x/ from a to b states that:

Z b

a
dx f .x/ D lim

N!1
b ! a
N

NX

iD0
f
!
aC i

b ! a
N

"
: (3.2)

We approximate the right hand side of this relation using equally spaced grid-points
xi 2 Œa; b! according to Eq. (2.1) and find

Z b

a
dx f .x/ " h

N!1X

iD1
fi: (3.3)

It is clear that the quality of this approach strongly depends on the discretization
chosen, i.e. on the values of xi as illustrated schematically in Fig. 3.1. Again, a non-
uniform grid may be of advantage. We can estimate the error of this approximation
by expanding f .x/ into a TAYLOR series.

We note that

Z b

a
dx f .x/ D

N!1X

iD1

Z xiC1

xi
dx f .x/; (3.4)

Fig. 3.1 Illustration of the
numerical approximation of a
proper integral according to
Eq. (3.3)

Consider a smooth function f(x) in [a,b], then the Riemann integral is defined as:

Discretization of [a,b] in equally space grid-points xi yields

Note
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hence, the approximation (3.3) is equivalent to an estimate of the area in the unit
interval, the elemental area:

Z xiC1

xi
dx f .x/ ! hfi: (3.5)

Furthermore, we find following Eq. (2.9a):

Z xiC1

xi
dx f .x/ D

Z xiC1

xi
dx
h
fi C .x " xi/f 0iC"!

i

D fihC O.h2/: (3.6)

In this last step we applied the first mean value theorem for integration which states
that if f .x/ is continuous in Œa; b", then there exists a ! 2 Œa; b" such that

Z b

a
dx f .x/ D .b " a/f .!/: (3.7)

(We shall come back to the mean value theorem in the course of our discussion
of Monte-Carlo integration in Chap. 14.) Consequently, the error we make with
approximation (3.3) can be seen from Eq. (3.6) to be of the order O.h2/.

This procedure corresponds to a forward difference approach and, equivalently,
backward differences can be used. This results in:

Z b

a
dx f .x/ D h

NX

iD2
fi C O.h2/: (3.8)

Let us now define the forward and backward rectangular rule by

iICiC1 D hfi ; (3.9)

and

iI!
iC1 D hfiC1; (3.10)

respectively. Thus, we obtain from TAYLOR’s expansion that:
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2
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h3
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and therefore for an elemental area



Error of discretization
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The error of this approximation can be found by expanding  f(x) in a Taylor series
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Where we used the mean value theorem for a continuous function f(x) in [a,b]:
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for some z in [a,b]

The procedure  above corresponds to the forward difference approach, similarly for 
backward:
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Central difference: Rectangular rule
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Accordingly, we get the following expression for the central difference, which has 
higher accuracy:

34 3 Numerical Integration

However, the use of central differences gives more accurate results as has already
been observed in Chap. 2 in which the differential operator was approximated. We
make use of the concept of intermediate grid-points (see Sect. 2.4) and consider the
integral

Z xiC1

xi
dx f .x/; (3.12)

expand f .x/ in a TAYLOR series around the midpoint xiC 1
2
, and obtain:
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Thus, the error generated by this method, the central rectangular rule, scales as
O.h3/ which is a significant improvement in comparison to Eqs. (3.3) and (3.8).1

We obtain

Z b

a
dx f .x/ D h

N!1X

iD1
fiC 1

2
C O.h3/: (3.14)

This approximation is known as the rectangular rule. It is illustrated in Fig. 3.2.
Note that the boundary points x1 D a and xN D b do not enter Eq. (3.14). Such a
procedure is commonly referred to as an open integration rule. On the other hand,
if the end-points are taken into account by the method it is referred to as a closed
integration rule.

1In this context the intermediate position xiC1=2 is understood as a true grid-point. If, on the other
hand, the function value fiC1=2 is approximated by #fiC1=2, Eq. (2.29), the method is referred to as
the trapezoidal rule.

I.e. the error is of order h3 (instead of h2)
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Rectangular rule or Midpoint rule

Note, the boundary points a and b of the integration interval do not enter: 
Example of an open integration rule. If the end-points are used the method is called 
closed.

3.3 Trapezoidal Rule 35

Fig. 3.2 Scheme of the
rectangular integration rule
according to Eq. (3.14). Note
that boundary points do not
enter the evaluation of the
elemental areas

3.3 Trapezoidal Rule

An elegant alternative to the rectangular rule is found when the area between two
grid-points is approximated by a trapezoid as is shown schematically in Fig. 3.3.
The trapezoidal rule is obtained when the function values fiC1=2 at intermediate grid-
points on the right hand side of the central rectangular rule (3.13) are approximated
with the help of !fiC1=2, Eq. (2.29). Thus, the elemental area is calculated from
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2
. fi C fiC1/ : (3.15)

and we obtain:
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D 1ITN : (3.16)

Note that this integration rule is closed, although the boundary points f1 and fN
enter the summation (3.16) only with half the weight in comparison to all other
function values fi. This stems from the fact that the function values f1 and fN
contribute only to one elemental area, the first and the last one. Another noticeable



Lower and Upper Sums
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The lower and upper sums are 
defined as:

Lower:

Upper: 

Define lower and upper bounds for the real integral, but these are impractical because 
of “inf” and “sup”.

More practical is the rectangular rule.



Bounding approximations
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x0 x1 x2 x4x3



Can be refined
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x0 x3 x5 x9x7



Can be refined
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x0 x5 x7 x11x9



Trapezoidal rule
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x=a x=b

x=x1

f(x)

x

The rectangular rule can be made more 
accurate by using trapezoids to replace the 
rectangles as shown. 
A linear approximation of the function locally 
sometimes work much better than using the 
averaged value like the rectangular rule does.

x=xn-1

3.3 Trapezoidal Rule 35

Fig. 3.2 Scheme of the
rectangular integration rule
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that boundary points do not
enter the evaluation of the
elemental areas
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3.3 Trapezoidal Rule

An elegant alternative to the rectangular rule is found when the area between two
grid-points is approximated by a trapezoid as is shown schematically in Fig. 3.3.
The trapezoidal rule is obtained when the function values fiC1=2 at intermediate grid-
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Note that this integration rule is closed, although the boundary points f1 and fN
enter the summation (3.16) only with half the weight in comparison to all other
function values fi. This stems from the fact that the function values f1 and fN
contribute only to one elemental area, the first and the last one. Another noticeable

Trapezoidal rule: (closed)

• Needs function values only at xi
• Error is, like rectangular rule, of order h3



Simpson (1/3) rule
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As we saw for the finite difference approximation of derivatives, the accuracy can be 
improved by using more gird points
There we expand f(x) around the midpoint xi of integration interval [xi-1,xi+1]

3.4 The SIMPSON Rule 37

3.4 The SIMPSON Rule

The basic idea of the SIMPSON rule is to include higher order derivatives into the
expansion of the integrand. These higher order derivatives, which are primarily
unknown, are then approximated by expressions we obtained within the context of
finite difference derivatives. Let us discuss this procedure in greater detail. To this
purpose we will study the integral of f .x/ within the interval Œxi!1; xiC1! and expand
the integrand around the midpoint xi:

Z xiC1

xi!1
dx f .x/ D

Z xiC1

xi!1
dx
!
fi C .x ! xi/f 0i C

.x ! xi/2

2Š
f 00i

C .x ! xi/3

3Š
f 000i C : : :

"

D 2hfi C
h3

3
f 00i C O.h5/: (3.20)

Inserting Eq. (2.34) for f 00i yields

Z xiC1

xi!1
dx f .x/ D 2hfi C

h
3
.fiC1 ! 2fi C fi!1/C O.h5/

D h
#
1

3
fi!1 C

4

3
fi C

1

3
fiC1

$
CO.h5/: (3.21)

Note that in contrast to the trapezoidal rule, the procedure described here is a three
point method since the function values at three different points enter the expression.
We can immediately write down the resulting integral from a to b. Since,

Z b

a
dx f .x/ D

Z x2

x0
dx f .x/C

Z x4

x2
dx f .x/C : : :C

Z xN

xN!2
dx f .x/; (3.22)

where we assumed that N is even and employed the discretization xi D x0C ih with
x0 D a and xN D b. We obtain:

Z b

a
dx f .x/ D h

3
.f0 C 4f1 C 2f2 C 4f3 C : : :C 2fN!2 C 4fN!1 C fN/C O.h5/:

(3.23)

This expression is exact for polynomials of degree n " 3 since the first term in
the error expansion involves the fourth derivative. Hence, whenever the integrand is
satisfactorily reproduceable by a polynomial of degree three or less, the SIMPSON

rule might give almost exact estimates, independent of the discretization h.

For the second derivate at xi we use fi’’≈(fi+1-2fi+fi-1)/h2
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This expression is exact for polynomials of degree n " 3 since the first term in
the error expansion involves the fourth derivative. Hence, whenever the integrand is
satisfactorily reproduceable by a polynomial of degree three or less, the SIMPSON

rule might give almost exact estimates, independent of the discretization h.

This is a three point rule and has error h5 ! (lucky cancellation of third derivate)

Simpson rule
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The composite form for interval [a,b] with even N follows from:

3.4 The SIMPSON Rule 37

3.4 The SIMPSON Rule

The basic idea of the SIMPSON rule is to include higher order derivatives into the
expansion of the integrand. These higher order derivatives, which are primarily
unknown, are then approximated by expressions we obtained within the context of
finite difference derivatives. Let us discuss this procedure in greater detail. To this
purpose we will study the integral of f .x/ within the interval Œxi!1; xiC1! and expand
the integrand around the midpoint xi:

Z xiC1

xi!1
dx f .x/ D

Z xiC1

xi!1
dx
!
fi C .x ! xi/f 0i C

.x ! xi/2

2Š
f 00i

C .x ! xi/3

3Š
f 000i C : : :

"

D 2hfi C
h3

3
f 00i C O.h5/: (3.20)

Inserting Eq. (2.34) for f 00i yields

Z xiC1

xi!1
dx f .x/ D 2hfi C

h
3
.fiC1 ! 2fi C fi!1/C O.h5/

D h
#
1

3
fi!1 C

4

3
fi C

1

3
fiC1

$
CO.h5/: (3.21)

Note that in contrast to the trapezoidal rule, the procedure described here is a three
point method since the function values at three different points enter the expression.
We can immediately write down the resulting integral from a to b. Since,

Z b

a
dx f .x/ D

Z x2

x0
dx f .x/C

Z x4

x2
dx f .x/C : : :C

Z xN

xN!2
dx f .x/; (3.22)
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x0 D a and xN D b. We obtain:

Z b

a
dx f .x/ D h

3
.f0 C 4f1 C 2f2 C 4f3 C : : :C 2fN!2 C 4fN!1 C fN/C O.h5/:

(3.23)

This expression is exact for polynomials of degree n " 3 since the first term in
the error expansion involves the fourth derivative. Hence, whenever the integrand is
satisfactorily reproduceable by a polynomial of degree three or less, the SIMPSON

rule might give almost exact estimates, independent of the discretization h.

we get (xi=a+ih)
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Note that in contrast to the trapezoidal rule, the procedure described here is a three
point method since the function values at three different points enter the expression.
We can immediately write down the resulting integral from a to b. Since,

Z b
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dx f .x/ D

Z x2

x0
dx f .x/C

Z x4

x2
dx f .x/C : : :C

Z xN

xN!2
dx f .x/; (3.22)

where we assumed that N is even and employed the discretization xi D x0C ih with
x0 D a and xN D b. We obtain:

Z b

a
dx f .x/ D h

3
.f0 C 4f1 C 2f2 C 4f3 C : : :C 2fN!2 C 4fN!1 C fN/C O.h5/:

(3.23)

This expression is exact for polynomials of degree n " 3 since the first term in
the error expansion involves the fourth derivative. Hence, whenever the integrand is
satisfactorily reproduceable by a polynomial of degree three or less, the SIMPSON

rule might give almost exact estimates, independent of the discretization h.

This expression is exact for polynomials of degree n≤3 since the first term in the 
error expansion involves the fourth derivative. 
If the integrand is satisfactorily reproduceable by a polynomial of degree three 
or less, the Simpson rule gives almost exact estimates, independent of h.
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For four-point approximations we get the Simpson (3/8) rule:

38 3 Numerical Integration

The arguments applied above allow for a straightforward extension to four- or
even more-point rules. We find, for instance,

Z xiC3

xi
dx f .x/ D 3h

8
.fi C 3fiC1 C 3fiC2 C fiC3/C O.h5/; (3.24)

which is usually called SIMPSON’s three-eight rule.
It is important to note that all the methods discussed so far are special cases of

a more general formulation, the NEWTON-COTES rules [2] which will be discussed
in the next section.

3.5 General Formulation: The NEWTON-COTES Rules

We define the LAGRANGE interpolating polynomial pn!1.x/ of degree n ! 1 [3–5]
to a function f .x/ as2

pn!1.x/ D
nX

jD1
fjL

.n!1/
j .x/; (3.25)

where

L.n!1/
j .x/ D

nY

kD1
k¤j

x ! xk
xj ! xk

: (3.26)

An arbitrary smooth function f .x/ can then be expressed with the help of a
LAGRANGE polynomial of degree n by

f .x/ D pn!1.x/C
f .n/Œ!.x/"

nŠ
.x ! x1/.x ! x2/ : : : .x ! xn/: (3.27)

If we neglect the second term on the right hand side of this equation and integrate
the LAGRANGE polynomial of degree n ! 1 over the n grid-points from x1 to xn we
obtain the closed n-point NEWTON-COTES formulas. For instance, if we set n D 2,

2The LAGRANGE polynomial pn!1.x/ to the function f .x/ is the polynomial of degree n ! 1 that
satisfies the n equations pn!1.xj/ D f .xj/ for j D 1; : : : ; n, where xj denotes arbitrary but distinct
grid-points.

five points: 
Bode’s rule:

Remarks:
• Simpson’s 1/3 rule is exact for polynomials up to order 3
• Simpson’s 3/8 rule is also exact for polynomials up to order 3! 

(no “lucky cancellation”)
• Bode’s rule is exact for polynomials up to order 5!
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of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O( ), instead of the coefficient.

Equation (4.1.3) is a two-point formula (x1 and x2). It is exact for polynomials
up to and including degree 1, i.e., f(x) = x. One anticipates that there is a
three-point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point
formula is exact for polynomials up to and including degree 3, i.e., f(x) = x 3:

Simpson’s rule:
∫ x3

x1

f(x)dx = h

[

1
3
f1 +

4
3
f2 +

1
3
f3

]

+ O(h5f (4)) (4.1.4)

Here f (4) means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval
of size 2h, so the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

Simpson’s 3
8 rule:

∫ x4

x1

f(x)dx = h

[

3
8
f1 +

9
8
f2 +

9
8
f3 +

3
8
f4

]

+ O(h5f (4)) (4.1.5)

The five-point formula again benefits from a cancellation:

Bode’s rule:
∫ x5

x1

f(x)dx = h

[

14
45

f1 +
64
45

f2 +
24
45

f3 +
64
45

f4 +
14
45

f5

]

+O(h7f (6)) (4.1.6)

This is exact for polynomials up to and including degree 5.
At this point the formulas stop being named after famous personages, so we

will not go any further. Consult [1] for additional formulas in the sequence.

Extrapolative Formulas for a Single Interval

We are going to depart from historical practice for a moment. Many texts
would give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.”
Here is an example:

∫ x5

x0

f(x)dx = h

[

55
24

f1 +
5
24

f2 +
5
24

f3 +
55
24

f4

]

+ O(h5f (4))
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The previous approximations can be formalized as follows:
Define the Lagrange interpolation polynomial pn-1(x) of degree n-1 to a function 
f(x):

38 3 Numerical Integration

The arguments applied above allow for a straightforward extension to four- or
even more-point rules. We find, for instance,

Z xiC3

xi
dx f .x/ D 3h

8
.fi C 3fiC1 C 3fiC2 C fiC3/C O.h5/; (3.24)

which is usually called SIMPSON’s three-eight rule.
It is important to note that all the methods discussed so far are special cases of

a more general formulation, the NEWTON-COTES rules [2] which will be discussed
in the next section.

3.5 General Formulation: The NEWTON-COTES Rules

We define the LAGRANGE interpolating polynomial pn!1.x/ of degree n ! 1 [3–5]
to a function f .x/ as2

pn!1.x/ D
nX

jD1
fjL

.n!1/
j .x/; (3.25)

where

L.n!1/
j .x/ D

nY

kD1
k¤j

x ! xk
xj ! xk

: (3.26)

An arbitrary smooth function f .x/ can then be expressed with the help of a
LAGRANGE polynomial of degree n by

f .x/ D pn!1.x/C
f .n/Œ!.x/"

nŠ
.x ! x1/.x ! x2/ : : : .x ! xn/: (3.27)

If we neglect the second term on the right hand side of this equation and integrate
the LAGRANGE polynomial of degree n ! 1 over the n grid-points from x1 to xn we
obtain the closed n-point NEWTON-COTES formulas. For instance, if we set n D 2,

2The LAGRANGE polynomial pn!1.x/ to the function f .x/ is the polynomial of degree n ! 1 that
satisfies the n equations pn!1.xj/ D f .xj/ for j D 1; : : : ; n, where xj denotes arbitrary but distinct
grid-points.
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It is important to note that all the methods discussed so far are special cases of

a more general formulation, the NEWTON-COTES rules [2] which will be discussed
in the next section.
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.x ! x1/.x ! x2/ : : : .x ! xn/: (3.27)

If we neglect the second term on the right hand side of this equation and integrate
the LAGRANGE polynomial of degree n ! 1 over the n grid-points from x1 to xn we
obtain the closed n-point NEWTON-COTES formulas. For instance, if we set n D 2,

2The LAGRANGE polynomial pn!1.x/ to the function f .x/ is the polynomial of degree n ! 1 that
satisfies the n equations pn!1.xj/ D f .xj/ for j D 1; : : : ; n, where xj denotes arbitrary but distinct
grid-points.

with

where pn-1(xj)=fj

With this, any smooth function f(x) can be written as

38 3 Numerical Integration

The arguments applied above allow for a straightforward extension to four- or
even more-point rules. We find, for instance,
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8
.fi C 3fiC1 C 3fiC2 C fiC3/C O.h5/; (3.24)

which is usually called SIMPSON’s three-eight rule.
It is important to note that all the methods discussed so far are special cases of

a more general formulation, the NEWTON-COTES rules [2] which will be discussed
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3.5 General Formulation: The NEWTON-COTES Rules

We define the LAGRANGE interpolating polynomial pn!1.x/ of degree n ! 1 [3–5]
to a function f .x/ as2
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.n!1/
j .x/; (3.25)

where

L.n!1/
j .x/ D
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xj ! xk
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An arbitrary smooth function f .x/ can then be expressed with the help of a
LAGRANGE polynomial of degree n by

f .x/ D pn!1.x/C
f .n/Œ!.x/"

nŠ
.x ! x1/.x ! x2/ : : : .x ! xn/: (3.27)

If we neglect the second term on the right hand side of this equation and integrate
the LAGRANGE polynomial of degree n ! 1 over the n grid-points from x1 to xn we
obtain the closed n-point NEWTON-COTES formulas. For instance, if we set n D 2,

2The LAGRANGE polynomial pn!1.x/ to the function f .x/ is the polynomial of degree n ! 1 that
satisfies the n equations pn!1.xj/ D f .xj/ for j D 1; : : : ; n, where xj denotes arbitrary but distinct
grid-points.

Neglecting the second term and integrating over the n grid-points the Lagrange 
polynomial only, one obtains the closed n-point Newton-Cotes formulas.

One can also define open Newton-Cotes rule (n=1 gives the rectangular rule), but these 
are typically inferior to Gauss-Legendre quadratures (which are open). see textbook
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For n=2, the Lagrange polynomial p1(x) to f(x) is

3.5 General Formulation: The NEWTON-COTES Rules 39

then

p1.x/ D f1L
.1/
1 .x/C f2L

.1/
2 .x/

D f1
x ! x2
x1 ! x2

C f2
x ! x1
x2 ! x1

D 1

h
Œx.f2 ! f1/! x1f2 C x2f1! ; (3.28)

with f1 " f .x1/ and f2 " f .x2/. Integration over the respective interval yields

Z x2

x1
dx p1.x/ D

1

h

!
x2

2
.f2 ! f1/C x.x2f1 ! x1f2/

"ˇ̌
ˇ̌
x2

x1

D h
2
Œf2 C f1! ; (3.29)

which is exactly the trapezoidal rule. By setting n D 3 one obtains SIMPSON’s rule
and setting n D 4 gives the SIMPSON’s three-eight rule.

The open NEWTON-COTES rule can be obtained by integrating the polynomial
pn!1.x/ of degree n ! 1 which includes the grid-points x1; : : : ; xn from x0 to xnC1.
The fact that these relations are open means that the function values at the boundary
points x0 D x1 ! h and xnC1 D xn C h do not enter the final expressions. The
simplest open NEWTON-COTES formula is the central integral approximationwhich
we encountered as the rectangular rule (3.14). A second order approximation is
easily found with help of the two-point LAGRANGE polynomial (3.28)

Z x3

x0
dx p1.x/ D

1

h

!
x2

2
.f2 ! f1/C x.x2f1 ! x1f2/

"ˇ̌
ˇ̌
x3

x0

D 3h
2
Œf2 C f1! : (3.30)

Higher order approximations can be obtained in a similar fashion. To conclude
this section let us briefly discuss an idea which is referred to as ROMBERG’s
method [6].

So far, we approximated all integrals by expressions of the form

I D I N C O.hm/; (3.31)

where I is the exact, unknown, value of the integral, I N is the estimate obtained
from an integration scheme using N grid-points, and m is the leading order of the
error. Let us review the error of the trapezoidal approximation: we learned that the
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The fact that these relations are open means that the function values at the boundary
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Higher order approximations can be obtained in a similar fashion. To conclude
this section let us briefly discuss an idea which is referred to as ROMBERG’s
method [6].

So far, we approximated all integrals by expressions of the form

I D I N C O.hm/; (3.31)

where I is the exact, unknown, value of the integral, I N is the estimate obtained
from an integration scheme using N grid-points, and m is the leading order of the
error. Let us review the error of the trapezoidal approximation: we learned that the

And therefore

which is the trapezoidal rule. 
For n=3 one get Simpson’s (1/3) rule, 
for n=4 Simpson’s 3/8 rule, and for n=5 Bode’s rule
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Much better than to predefine the number of sub-intervals, N, 
is to refine the integration rule until some specified degree of 
accuracy has been achieved.

4.2 Elementary Algorithms 139
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trapzd.) The leading error term in the second evaluation will be 1/4 the size of the
error in the first evaluation. Therefore the combination

S =
4
3
S2N − 1

3
SN (4.2.4)

will cancel out the leading order error term. But there is no error term of order 1/N 3,
by (4.2.1). The surviving error is of order 1/N 4, the same as Simpson’s rule. In fact,
it should not take long for you to see that (4.2.4) is exactly Simpson’s rule (4.1.13),
alternating 2/3’s, 4/3’s, and all. This is the preferred method for evaluating that rule,
and we can write it as a routine exactly analogous to qtrap above:

#include <math.h>
#define EPS 1.0e-6
#define JMAX 20

float qsimp(float (*func)(float), float a, float b)
Returns the integral of the function func from a to b. The parameters EPS can be set to the
desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum allowed
number of steps. Integration is performed by Simpson’s rule.
{

float trapzd(float (*func)(float), float a, float b, int n);
void nrerror(char error_text[]);
int j;
float s,st,ost=0.0,os=0.0;

for (j=1;j<=JMAX;j++) {
st=trapzd(func,a,b,j);
s=(4.0*st-ost)/3.0; Compare equation (4.2.4), above.
if (j > 5) Avoid spurious early convergence.

if (fabs(s-os) < EPS*fabs(os) ||
(s == 0.0 && os == 0.0)) return s;

os=s;
ost=st;

}
nrerror("Too many steps in routine qsimp");
return 0.0; Never get here.

}

The routine qsimp will in general be more efficient than qtrap (i.e., require
fewer function evaluations) when the function to be integrated has a finite 4th
derivative (i.e., a continuous 3rd derivative). The combination of qsimp and its
necessary workhorse trapzd is a good one for light-duty work.

CITED REFERENCES AND FURTHER READING:
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

§3.3.
Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),

§§7.4.1–7.4.2.
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical

Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.3.

Example: 
adaptive 
refinement of 
trapezoidal rule 
(equivalent to 
Simpson’s 1/3 rule)
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Orthogonal Legendre polynomials Pl(x) are solutions of the Legendre differential 
equation:

3.6 GAUSS-LEGENDRE Quadrature 41

Fig. 3.4 Illustration of the ROMBERG method. Here, the I .m; n/ are synonyms for integrals I n
m

where the first index m refers to the order of the quadrature while the second index n refers to the
number of grid-points used. Note that we only have to use a second order integration scheme (left
row inside the box), all other values are determined via Eq. (3.35) as indicated by the arrows
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In preparation for the GAUSS-LEGENDRE quadrature we introduce a set of orthogo-
nal LEGENDRE polynomialsP`.x/ [3, 4, 7, 8] which are solutions of the LEGENDRE

differential equation

!
1 ! x2

"
P00
` .x/ ! 2xP0

`.x/C `.`C 1/P`.x/ D 0: (3.36)

This equation occurs, for instance, when the LAPLACE equation !f .x/ D 0 is
transformed to spherical coordinates. Here, we will introduce the most important
properties of LEGENDRE polynomials which will be required for an understanding
of the GAUSS-LEGENDRE quadrature.

LEGENDRE polynomials are given by

P`.x/ D
1X

kD0
ak;`xk; (3.37)

where the coefficients ak;` can be determined recursively:

akC2;` D
k.kC 1/! `.`C 1/

.kC 1/.kC 2/
ak;`: (3.38)

Hence, for even values of ` the LEGENDRE polynomial involves only even powers
of x and for odd ` only odd powers of x. Note also that according to Eq. (3.38) for
k " ` the coefficients are equal to zero and, thus, it follows from Eq. (3.37) that the
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Properties
• for even l, Pl(x) is even, and odd for odd l, 
• for k≥l, the coefficients are zero
• Pl(x) is of degree l
• fulfills orthonormality:

• P0(x)=1, P1(x)=x
• can be written as (Rodrigues’ formula):

42 3 Numerical Integration

P`.x/ are polynomials of degree `. Furthermore, the LEGENDRE polynomials fulfill
the orthonomality condition

Z 1

!1
dxP`.x/P`0.x/ D

2

2`0 C 1
ı``0 ; (3.39)

where ıij is KRONECKER’s delta. One obtains, in particular,

P0.x/ D 1; (3.40)

and

P1.x/ D x : (3.41)

Another convenient way to calculate LEGENDRE polynomials is based on
RODRIGUES’ formula

P`.x/ D
1

2``Š

d`

dx`
!
x2 ! 1

"`
: (3.42)

We focus now on the core of the GAUSS-LEGENDRE quadrature and introduce
the function F.x/ as a transform of the function f .x/

F.x/ D b ! a
2

f
#
b ! a
2

xC bC a
2

$
; (3.43)

in such a way that we can rewrite the integral of interest as:

Z b

a
dxf .x/ D

Z 1

!1
dxF.x/: (3.44)

If the function F.x/ can be well approximated by some polynomial of degree 2n!1,
like

F.x/ " p2n!1.x/ ; (3.45)

then this means that according to TAYLOR’s theorem (2.7) the error introduced
by this approximation is proportional to F.2n/.x/. If the polynomial p2n!1.x/ is
explicitly given then we can apply the methods discussed in the previous sections
to approximate the integral (3.44). However, even if the polynomial is not explicitly
given we write the integral (3.44) as

Z 1

!1
dxF.x/ D

nX

iD1
!iF.xi/ ; (3.46)
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Define the linear transformation of f(x):

which gives:

Now we use polynomial approximation (if possible):
• p2n-1(x) is some polynomial of degree 2n-1
• the error is proportional to F(2n)(x).
• If p2n-1(x) is explicitly given, we can use Newton-Cotes formulas
• otherwise, we write:

with some weights wi and grid-points xi, which are undetermined!
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Task: 
find weights wi and grid-points xi such that the integral is best approximated.
• start with the decomposition:

where p&q are a polynomials of degree n-1, Pn(x) the Legendre polynomial of 
degree n
Since p is a polynomial, we can also write:

Using orthonormality we get:

Since Pn(x) is a Legendre polynomial, it has n zeros in the interval [-1,1], such that

3.6 GAUSS-LEGENDRE Quadrature 43

with weights !i and grid-points xi, i D 1; : : : ; n which are yet undetermined!
Therefore, we will determine the weights!i and grid-points xi in such a way, that the
integral is well approximated even if the polynomial p2n!1 in Eq. (3.45) is unknown.
For this purpose we decompose p2n!1.x/ into

p2n!1.x/ D pn!1.x/Pn.x/C qn!1.x/ ; (3.47)

where Pn.x/ is the LEGENDRE polynomial of degree n and pn!1.x/ and qn!1.x/ are
polynomials of degree n ! 1. Since pn!1.x/ itself is a polynomial of degree n ! 1, it
can also be expanded in LEGENDRE polynomials of degrees up to n ! 1 by

pn!1.x/ D
n!1X

iD0
aiPi.x/ : (3.48)

Using Eq. (3.48) in (3.47) we obtain together with normalization relation (3.39)

Z 1

!1
dx p2n!1.x/ D

n!1X

iD0
ai

Z 1

!1
dx Pi.x/Pn.x/C

Z 1

!1
dx qn!1.x/ D

Z 1

!1
dx qn!1.x/ :

(3.49)

Moreover, since Pn.x/ is a LEGENDRE polynomial of degree n it has n-zeros in the
interval Œ!1; 1! and Eq. (3.47) results in

p2n!1.xi/ D qn!1.xi/ ; (3.50)

where x1; x2; : : : ; xn denote the zeros of Pn.x/ and these zeros determine the grid-
points of our integration routine. It is interesting to note, that these zeros are
independent of the function F.x/ we want to integrate. We also expand qn!1.x/ in
terms of LEGENDRE polynomials

qn!1.x/ D
n!1X

iD0
biPi.x/ ; (3.51)

and use it in Eq. (3.50) to obtain

p2n!1.xi/ D
n!1X

kD0
bkPk.xi/ ; i D 1; : : : ; n ; (3.52)
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where xi are the zeros of Pn(x), which will be our grid points

Note, these zeros are independent of F(x) and therefore p2n-1(x) !
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Expanding also q in terms of Legendre polynomials: 
we get:
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For this purpose we decompose p2n!1.x/ into

p2n!1.x/ D pn!1.x/Pn.x/C qn!1.x/ ; (3.47)

where Pn.x/ is the LEGENDRE polynomial of degree n and pn!1.x/ and qn!1.x/ are
polynomials of degree n ! 1. Since pn!1.x/ itself is a polynomial of degree n ! 1, it
can also be expanded in LEGENDRE polynomials of degrees up to n ! 1 by

pn!1.x/ D
n!1X

iD0
aiPi.x/ : (3.48)

Using Eq. (3.48) in (3.47) we obtain together with normalization relation (3.39)

Z 1

!1
dx p2n!1.x/ D

n!1X

iD0
ai

Z 1

!1
dx Pi.x/Pn.x/C

Z 1

!1
dx qn!1.x/ D

Z 1

!1
dx qn!1.x/ :

(3.49)

Moreover, since Pn.x/ is a LEGENDRE polynomial of degree n it has n-zeros in the
interval Œ!1; 1! and Eq. (3.47) results in

p2n!1.xi/ D qn!1.xi/ ; (3.50)

where x1; x2; : : : ; xn denote the zeros of Pn.x/ and these zeros determine the grid-
points of our integration routine. It is interesting to note, that these zeros are
independent of the function F.x/ we want to integrate. We also expand qn!1.x/ in
terms of LEGENDRE polynomials

qn!1.x/ D
n!1X

iD0
biPi.x/ ; (3.51)

and use it in Eq. (3.50) to obtain

p2n!1.xi/ D
n!1X

kD0
bkPk.xi/ ; i D 1; : : : ; n ; (3.52)
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which can be written in a more compact form by defining pi ! p2n!1.xi/ and Pki !
Pk.xi/:

pi D
n!1X

kD0
bkPki ; i D 1; : : : ; n : (3.53)

It has to be emphasized again that the grid-points xi are independent of the
polynomial p2n!1.x/ and, therefore, independent of F.x/. Furthermore, we can
replace pi " F.xi/ ! Fi according to Eq. (3.45). We recognize that Eq. (3.53)
corresponds to a system of linear equations which can be solved for the weights
bk. We obtain

bk D
nX

iD1
Fi
!
P!1"

ik ; (3.54)

where P is the matrix P D fPijg, which is known to be non-singular. We can now
rewrite the integral (3.44) with the help of Eqs. (3.45), (3.49), and (3.51) together
with the properties of the zeros of LEGENDRE polynomials [7, 8] as
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dx F.x/ "
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dx p2n!1.x/ D

n!1X

kD0
bk

Z 1
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dx Pk.x/ : (3.55)

Since P0.x/ D 1 according to Eq. (3.40), we deduce from Eq. (3.39)

Z 1
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dx Pk.x/ D
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dx Pk.x/P0.x/ D

2

2kC 1
ık0 D 2ık0 : (3.56)

Hence, Eq. (3.55) reads

Z 1

!1
dx F.x/ " 2b0 D 2

nX

iD1
Fi
!
P!1"

i0 : (3.57)

By defining

!i D 2
!
P!1"

i0 ; (3.58)

we arrive at the desired expansion

Z 1

!1
dxF.x/ "

nX

iD1
!iFi : (3.59)

and pi≈Fi

linear equation system for bk:
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which can be written in a more compact form by defining pi ! p2n!1.xi/ and Pki !
Pk.xi/:

pi D
n!1X

kD0
bkPki ; i D 1; : : : ; n : (3.53)

It has to be emphasized again that the grid-points xi are independent of the
polynomial p2n!1.x/ and, therefore, independent of F.x/. Furthermore, we can
replace pi " F.xi/ ! Fi according to Eq. (3.45). We recognize that Eq. (3.53)
corresponds to a system of linear equations which can be solved for the weights
bk. We obtain
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!
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where P is the matrix P D fPijg, which is known to be non-singular. We can now
rewrite the integral (3.44) with the help of Eqs. (3.45), (3.49), and (3.51) together
with the properties of the zeros of LEGENDRE polynomials [7, 8] as
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we arrive at the desired expansion

Z 1

!1
dxF.x/ "

nX

iD1
!iFi : (3.59)

inverse matrix 
of P={Pik} which 
is non-singular

then we can write:

and use trick [P0(x)=1]:
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which can be written in a more compact form by defining pi ! p2n!1.xi/ and Pki !
Pk.xi/:

pi D
n!1X

kD0
bkPki ; i D 1; : : : ; n : (3.53)

It has to be emphasized again that the grid-points xi are independent of the
polynomial p2n!1.x/ and, therefore, independent of F.x/. Furthermore, we can
replace pi " F.xi/ ! Fi according to Eq. (3.45). We recognize that Eq. (3.53)
corresponds to a system of linear equations which can be solved for the weights
bk. We obtain

bk D
nX
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Fi
!
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ik ; (3.54)

where P is the matrix P D fPijg, which is known to be non-singular. We can now
rewrite the integral (3.44) with the help of Eqs. (3.45), (3.49), and (3.51) together
with the properties of the zeros of LEGENDRE polynomials [7, 8] as
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Since P0.x/ D 1 according to Eq. (3.40), we deduce from Eq. (3.39)
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which can be written in a more compact form by defining pi ! p2n!1.xi/ and Pki !
Pk.xi/:

pi D
n!1X

kD0
bkPki ; i D 1; : : : ; n : (3.53)

It has to be emphasized again that the grid-points xi are independent of the
polynomial p2n!1.x/ and, therefore, independent of F.x/. Furthermore, we can
replace pi " F.xi/ ! Fi according to Eq. (3.45). We recognize that Eq. (3.53)
corresponds to a system of linear equations which can be solved for the weights
bk. We obtain

bk D
nX
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Fi
!
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ik ; (3.54)

where P is the matrix P D fPijg, which is known to be non-singular. We can now
rewrite the integral (3.44) with the help of Eqs. (3.45), (3.49), and (3.51) together
with the properties of the zeros of LEGENDRE polynomials [7, 8] as
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Since P0.x/ D 1 according to Eq. (3.40), we deduce from Eq. (3.39)
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Hence, Eq. (3.55) reads
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By defining
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we arrive at the desired expansion
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which gives us

defining

get finally get:
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which can be written in a more compact form by defining pi ! p2n!1.xi/ and Pki !
Pk.xi/:

pi D
n!1X

kD0
bkPki ; i D 1; : : : ; n : (3.53)

It has to be emphasized again that the grid-points xi are independent of the
polynomial p2n!1.x/ and, therefore, independent of F.x/. Furthermore, we can
replace pi " F.xi/ ! Fi according to Eq. (3.45). We recognize that Eq. (3.53)
corresponds to a system of linear equations which can be solved for the weights
bk. We obtain

bk D
nX

iD1
Fi
!
P!1"

ik ; (3.54)

where P is the matrix P D fPijg, which is known to be non-singular. We can now
rewrite the integral (3.44) with the help of Eqs. (3.45), (3.49), and (3.51) together
with the properties of the zeros of LEGENDRE polynomials [7, 8] as
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Since P0.x/ D 1 according to Eq. (3.40), we deduce from Eq. (3.39)

Z 1

!1
dx Pk.x/ D

Z 1

!1
dx Pk.x/P0.x/ D
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Hence, Eq. (3.55) reads
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By defining
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!
P!1"

i0 ; (3.58)

we arrive at the desired expansion
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which can be written in a more compact form by defining pi ! p2n!1.xi/ and Pki !
Pk.xi/:

pi D
n!1X

kD0
bkPki ; i D 1; : : : ; n : (3.53)

It has to be emphasized again that the grid-points xi are independent of the
polynomial p2n!1.x/ and, therefore, independent of F.x/. Furthermore, we can
replace pi " F.xi/ ! Fi according to Eq. (3.45). We recognize that Eq. (3.53)
corresponds to a system of linear equations which can be solved for the weights
bk. We obtain

bk D
nX

iD1
Fi
!
P!1"

ik ; (3.54)

where P is the matrix P D fPijg, which is known to be non-singular. We can now
rewrite the integral (3.44) with the help of Eqs. (3.45), (3.49), and (3.51) together
with the properties of the zeros of LEGENDRE polynomials [7, 8] as
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dx p2n!1.x/ D

n!1X

kD0
bk
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dx Pk.x/ : (3.55)

Since P0.x/ D 1 according to Eq. (3.40), we deduce from Eq. (3.39)
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dx Pk.x/P0.x/ D

2

2kC 1
ık0 D 2ık0 : (3.56)

Hence, Eq. (3.55) reads
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dx F.x/ " 2b0 D 2

nX

iD1
Fi
!
P!1"

i0 : (3.57)

By defining

!i D 2
!
P!1"

i0 ; (3.58)

we arrive at the desired expansion
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which can be written in a more compact form by defining pi ! p2n!1.xi/ and Pki !
Pk.xi/:

pi D
n!1X

kD0
bkPki ; i D 1; : : : ; n : (3.53)

It has to be emphasized again that the grid-points xi are independent of the
polynomial p2n!1.x/ and, therefore, independent of F.x/. Furthermore, we can
replace pi " F.xi/ ! Fi according to Eq. (3.45). We recognize that Eq. (3.53)
corresponds to a system of linear equations which can be solved for the weights
bk. We obtain

bk D
nX

iD1
Fi
!
P!1"

ik ; (3.54)

where P is the matrix P D fPijg, which is known to be non-singular. We can now
rewrite the integral (3.44) with the help of Eqs. (3.45), (3.49), and (3.51) together
with the properties of the zeros of LEGENDRE polynomials [7, 8] as

Z 1

!1
dx F.x/ "

Z 1

!1
dx p2n!1.x/ D

n!1X

kD0
bk

Z 1

!1
dx Pk.x/ : (3.55)

Since P0.x/ D 1 according to Eq. (3.40), we deduce from Eq. (3.39)

Z 1

!1
dx Pk.x/ D

Z 1

!1
dx Pk.x/P0.x/ D

2

2kC 1
ık0 D 2ık0 : (3.56)

Hence, Eq. (3.55) reads

Z 1

!1
dx F.x/ " 2b0 D 2

nX

iD1
Fi
!
P!1"

i0 : (3.57)

By defining

!i D 2
!
P!1"

i0 ; (3.58)

we arrive at the desired expansion

Z 1

!1
dxF.x/ "

nX

iD1
!iFi : (3.59)

Notes:
• the Gauss-Legendre quadrature is exact for polynomials of degree 2n-1!
• xi and wi are independent of F(x) and can be tabled
• the grid-points xi are symmetrically distributed around 0 and have the same 

weights
• the Gauss-Legendre quadrature is an open method: ±1 are not grid-points
• higher accuracy and convergence than comparable Newton-Cotes

3.6 GAUSS-LEGENDRE Quadrature 45

Moreover, since we approximated F.x/ by a polynomial of degree 2n ! 1, the
GAUSS-LEGENDRE quadrature is exact for polynomials of degree 2n ! 1, i.e.
the error is proportional to a derivative of F.x/ of order 2n. Furthermore, expres-
sion (3.58) can be put in a more convenient form. One can show that

!i D
2

.1! x2i /
!
P0
n.xi/

"2 ; (3.60)

where

P0
n.xi/ D

d
dx

Pn.x/

ˇ̌
ˇ̌
xDxi

: (3.61)

Let us make some concluding remarks. The grid-points xi as well as the weights
!i are independent of the actual function F.x/ we want to integrate. This means,
that one can table these values once and for all [7, 8] and use them for different
types of problems. The grid-points xi are symmetrically distributed around the
point x D 0, i.e. for every xj there is a !xj. Furthermore, these two grid-points
have the same weight !j. The density of grid-points increases approaching the
boundary, however, the boundary points themselves are not included, which means
that the GAUSS-LEGENDRE quadrature is an open method. Furthermore, it has to be
emphasized that low order GAUSS-LEGENDRE parameters can easily be calculated
by employing relation (3.42). This makes the GAUSS-LEGENDRE quadrature the
predominant integration method. In comparison to the trapezoidal rule or even
the ROMBERG method, it needs in many cases a smaller number of grid-points,
is simpler to implement, converges faster and yields more accurate results. One
drawback of this method is that one has to compute the function F.x/ at the zeros of
the LEGENDRE polynomial xi. This can be a problem if the integrand at hand is not
known analytically.

It is important to note at this point that comparable procedures exist which
use other types of orthogonal polynomials, such as HERMITE polynomials. This
procedure is known as the GAUSS-HERMITE quadrature.

Table 3.1 lists the methods, discussed in the previous sections, which allow to
calculate numerically an estimate of integrals of the form:

Z b

a
dx f .x/ : (3.62)

Equal grid-spacing h is assumed, with the GAUSS-LEGENDRE method as the only
exception. The particular value of h depends on the order of the method employed
and is given in Table 3.1.

one can show that
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• Here we concentrate on N=1 (composite rules are straight forward)

• For n=2, we have:

• This leads to 4 unknowns: c1, c2, x1, and x2
– two unknown weights (c1, c2)
– two unknown sampling points (x1, x2)

• we need four known values for the equation.
• If we had these, we could then attempt to solve for the four unknowns.
• Let’s with polynomials
• For n=2, let’s look at: 1, x, x2, x3

( ) ( )2211 xfcxfcI +»
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• Recalling the formula: 
– Constant

• f(x)=1

– Linear
• f(x)=x

– Quadratic
• f(x)=x2

– Cubic
• f(x)=x3
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Solving these non-linear equations gives:

à Gauss-Legendre formula:

à This is exact for all polynomials up to and including degree 3!
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• Solution of these equations gives

• Produces the three-point Gauss-Legendre formula

– Exact for polynomials up to and including degree 5
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• Requires function evaluations at non-uniformly spaced 
points within the integration interval
– not appropriate for cases where the function is 

unknown
– not suited for dealing with tabulated data that appear 

in many engineering problems
• If the function is known, its efficiency can be a decided 

advantage
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Consider

46 3 Numerical Integration

Table 3.1 Summary of the quadrature methods discussed in this chapter applied to the integralR b
a dxf .x/. For a detailed description consult the corresponding sections. Equal grid-spacing is
assumed for all methods except for the GAUSS-LEGENDRE quadrature. The explicit values of h
depend on the order of the method and are listed in the table. Furthermore, we use xi D aC ih and
denote f .xi/ D fi. The function P.m/.x/ which appears in the description of the NEWTON-COTES
rules denotes the m-th order LAGRANGE interpolating polynomial and Pm.x/ is the m-th degree
LEGENDRE polynomial

n h I Method Comment

1 b!a
2

hf1 Rectangular Open

2 b ! a h
2
.f0 C f1/ Trapezoidal Closed

3 b!a
2

h
3
.f0 C 4f1 C f2/ SIMPSON Closed

4 b!a
3

3h
8
.f0 C 3f1 C 3f2 C f3/ SIMPSON 3

8
Closed

m b!a
m!1

R xm!1

x0 dxP.m/.x/ NEWTON-COTES Closed

m b!a
mC1

R xmC1

x0 dxP.m/.x/ NEWTON-COTES Open

m Pm.xj/ D 0 b!a
2

Pm
jD1 !j f

!
zj
"

GAUSS-LEGENDRE Open

zj D aCb
2

C a!b
2
xj

!j D 2

.1!xj/2ŒP0m.xj/!
2

3.7 An Example

Let us discuss as an example the following proper integral:

I D
Z 1

!1

dx
xC 2

D ln.3/! ln.1/ " 1:09861 : (3.63)

We will now apply the various methods of Table 3.1 to approximate Eq. (3.63). Note
that these methods could give better results if a finer grid had been chosen. However,
since this is only an illustrative example, we wanted to keep it as simple as possible.
The rectangular rule gives

IR D 1 # 1
2
D 0:5 ; (3.64)

the trapezoidal rule

IT D 2

2

#
1

1
C 1

3

$
D 4

3
D 1:333 : : : ; (3.65)

and an application of the SIMPSON rule yields

IS D
1

3

#
1

1
C 4

2
C 1

3

$
D 10

9
D 1:111 : : : : (3.66)

Approximations
• rectangular rule:

• trapezoidal rule:

• Simpson rule:

• Gauss-Legendre 2nd order:
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Table 3.1 Summary of the quadrature methods discussed in this chapter applied to the integralR b
a dxf .x/. For a detailed description consult the corresponding sections. Equal grid-spacing is
assumed for all methods except for the GAUSS-LEGENDRE quadrature. The explicit values of h
depend on the order of the method and are listed in the table. Furthermore, we use xi D aC ih and
denote f .xi/ D fi. The function P.m/.x/ which appears in the description of the NEWTON-COTES
rules denotes the m-th order LAGRANGE interpolating polynomial and Pm.x/ is the m-th degree
LEGENDRE polynomial

n h I Method Comment

1 b!a
2

hf1 Rectangular Open

2 b ! a h
2
.f0 C f1/ Trapezoidal Closed

3 b!a
2

h
3
.f0 C 4f1 C f2/ SIMPSON Closed

4 b!a
3
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8
.f0 C 3f1 C 3f2 C f3/ SIMPSON 3

8
Closed

m b!a
m!1
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3.7 An Example

Let us discuss as an example the following proper integral:

I D
Z 1

!1

dx
xC 2

D ln.3/! ln.1/ " 1:09861 : (3.63)

We will now apply the various methods of Table 3.1 to approximate Eq. (3.63). Note
that these methods could give better results if a finer grid had been chosen. However,
since this is only an illustrative example, we wanted to keep it as simple as possible.
The rectangular rule gives
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and an application of the SIMPSON rule yields
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Table 3.1 Summary of the quadrature methods discussed in this chapter applied to the integralR b
a dxf .x/. For a detailed description consult the corresponding sections. Equal grid-spacing is
assumed for all methods except for the GAUSS-LEGENDRE quadrature. The explicit values of h
depend on the order of the method and are listed in the table. Furthermore, we use xi D aC ih and
denote f .xi/ D fi. The function P.m/.x/ which appears in the description of the NEWTON-COTES
rules denotes the m-th order LAGRANGE interpolating polynomial and Pm.x/ is the m-th degree
LEGENDRE polynomial
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Finally, we apply the GAUSS-LEGENDRE quadrature in a second order approxima-
tion. We could look up the parameters in [7, 8], however, for illustrative reasons we
will calculate those in this simple case. For a second order approximation we need
the LEGENDRE polynomial of second degree. It can be obtained from RODRIGUES’
formula (3.42):

P2.x/ D
1

222Š

d2

dx2
!
x2 ! 1

"2

D 1

2

!
3x2 ! 1

"
: (3.67)

In a next step the zeros x1 and x2 of P2.x/ are determined from Eq. (3.67) which
results immediately in:

x1;2 D ˙ 1p
3

" ˙0:57735 : (3.68)

The weights !1 and !2 can now be evaluated according to Eq. (3.60):

!i D
2

.1 ! x2i /
#
P0
2.xi/

$2 : (3.69)

It follows from Eq. (3.67) that

P0
2.x/ D 3x ; (3.70)

and, thus,

P0
2.x1/ D !

p
3 and P0

2.x2/ D
p
3 : (3.71)

This is used to calculate the weights from Eq. (3.69):

!1 D !2 D 1 : (3.72)

We combine the results (3.68) and (3.72) to arrive at the GAUSS-LEGENDRE

estimate of the integral (3.63):

IGL D 1

! 1p
3
C 2

C 1
1p
3
C 2

D 1:090909 : : : : (3.73)

Obviously, a second order GAUSS-LEGENDRE approximation results already in a
much better estimate of the integral (3.63) than the trapezoidal rule which is also
of second order. It is also better than the estimate by the SIMPSON rule which is of
third order.
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Numerical recipes: “with the exception of two of the most modest 
formulas (“extended trapezoidal rule,” and “extended midpoint 
rule,”), the classical formulas are almost entirely useless. 
They are museum pieces, but beautiful ones.”


