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Model

A. Glatz: Computational Physics 2

• The Kepler problem is a special case of the two-body problem.
• two-body potential U(|r1-r2|) à Lagrange function:

• reducible to two-dimensional motion of point particle with 
reduce mass m in central potential U

• Energy, E, and angular momentum, ℓ, are conserved
• rotational symmetry à use polar coordinates (𝜌,𝜑)

Equations of motion
(EoM) for relative 
coordinate:

Chapter 4
The KEPLER Problem

4.1 Introduction

The KEPLER problem [1–6] is certainly one of the most important problems in the
history of physics and natural sciences in general. We will study this problem for
several reasons: (i) it is a nice demonstration of the applicability of the methods
introduced in the previous chapters, (ii) important concepts of the numerical
treatment of ordinary differential equations can be introduced quite naturally, and
(iii) it allows to revisit some of the most important aspects of classical mechanics.

The KEPLER problem is a special case of the two-body problem which is
discussed in Appendix A. Let us summarize the main results. We consider two
point particles interacting via the rotationally symmetric two body potential U
which is solely a function of the distance between the particles. The symmetries
of this problem allow several simplifications: (i) The problem can be reduced to
the two dimensional motion of a point particle with reduced mass m in the central
potential U. (ii) By construction, the total energy E is conserved. (iii) The length `
of the angular momentum vector is also conserved because of the symmetry of the
potential U. Due to this rotational symmetry it is a natural choice to describe the
particle’s motion in polar coordinates .!; '/.

The final differential equations which have to be solved are of the form

P' D `

m!2
; (4.1)

and

P! D ˙
s
2

m

!
E ! U.!/! `2

2m!2

"
: (4.2)
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(see Appendix A for derivation)

Appendix A
The Two-Body Problem

Consider two mass points with positions ri.t/ 2 R3, i D 1; 2 and masses mi,
i D 1; 2. It is assumed that the point masses interact through a central potential
U D U.jr1.t/ ! r2.t/j/ and that external forces are neglected. Thus, the system is
closed. The explicit notation of time t is now omitted for the sake of a more compact
presentation. Furthermore, we introduce with pi 2 R3, i D 1; 2 the point mass’
momentum and the LAGRANGE function [1–5] of the system takes on the form

L.r1; r2; p1; p2/ D
p21
2m1

C p22
2m2

! U.jr1 ! r2j/ : (A.1)

The moments pi are replaced by

pi D miPri; i D 1; 2 ; (A.2)

and this yields for the LAGRANGE function (A.1)

L.r1; r2; Pr1; Pr2/ D
m1
2
Pr21 C

m2
2
Pr22 ! U.jr1 ! r2j/ ; (A.3)

where Pri denotes the time derivative of ri. We note the following symmetries:
the LAGRANGE function is (i) translational invariant, (ii) rotational invariant, and
(iii) time invariant. We know from classical mechanics that each symmetry of
the LAGRANGE function corresponds to a constant of motion (a quantity that
is conserved throughout the motion) and, thus, results in a reduction of the
dimensionality of the 12-dimensional phase space.

Let us demonstrate these symmetries: In order to prove translational invariance,
we transform to center of mass coordinates which are defined as

R D m1r1 C m2r2
m1 C m2

and r D r2 ! r1 : (A.4)
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• define effective potential:

• Separation of variables in the EoM for 𝜌 yields:

where 𝜌0≡𝜌(t0) is the initial condition at time t0

• similarly for 𝜑 with dt=d𝜌/(d𝜌/dt):

with 𝜑0=𝜑(t0)

54 4 The KEPLER Problem

Here, one usually defines the effective potential

Ueff.!/ D U.!/C `2

2m!2
; (4.3)

as the sum of the interaction potential and the centrifugal barrier Umom.!/ D
`2=2m!2. Equation (4.2) can be transformed into an implicit equation for !

t D t0 ˙
Z !

!0

d!0
!
2

m

"
E ! Ueff.!

0/
#$! 1

2

; (4.4)

with !0 " !.t0/ the initial condition at time t0. Furthermore, the angle ' is related
to the radius ! by

' D '0 ˙
Z !

!0

d!0
`

m!02

!
2

m

"
E ! Ueff.!

0/
#$! 1

2

; (4.5)

with the initial condition '0 " '.t0/.
The KEPLER problem is defined by the gravitational interaction potential

U.!/ D !˛
!
; ˛ > 0: (4.6)

For this case, we show in Fig. 4.1 schematically the effective potential (4.3) (solid
black line), together with the gravitational potential U.!/ (dashed-dotted line) and
the centrifugal barrier Umom (dashed line). The gravitational potential (4.6) is now

Fig. 4.1 Schematic illustration of the effective potential Ueff.!/=Ueff.!0/ vs !=!0 (solid line, right
hand scale). Here, !0 is the distance of the minimum in Ueff.!/. Ugrav.!/ (dashed-dotted line)
denotes the gravitational contribution while Umom.!/ (dashed line) denotes the centrifugal barrier.
Both potentials are normalized to Ueff.!0/ (Left hand scale applies)
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ℓ: angular 
momentum

346 A The Two-Body Problem

Finally, the angle ' can be expressed as a function of the radius !, i.e. ' D '.!/.
We get from Eqs. (A.22) and (A.30)

d'
d!

D d'
dt

dt
d!

D ˙ j`j
m!2

!
2

m

"
E ! U.!/! j`j2

2m!2

#$! 1
2

; (A.32)

integrate over !, and find the desired relation

' D '0 ˙ j`j
Z !

!0

d!0

!0
p
2m!02 ŒE ! U.!0/" ! j`j2

; (A.33)

where '0 " '.t0/.

à 
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For the Kepler problem we use the gravitational potential:
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solution for 𝜑

A. Glatz: Computational Physics 5

Using the gravitational potential, we have to calculate:

with substitution u=1/𝜌

This integral can be calculated and results in

4.1 Introduction 55

inserted into Eq. (4.5):

' D '0 ˙
Z !

!0

d!0
`

m!02

!
2

m

"
EC ˛

!0
! `2

2m!02

#$! 1
2

: (4.7)

The substitution u D 1=! simplifies Eq. (4.7) to

' D '0 "
Z u2

u1
du
!
2mE
`2

C 2m˛
`2

u ! u2
$! 1

2

; (4.8)

where the integration boundaries u1 and u2 are 1=!0 and 1=!, respectively. The
integral can now be evaluated with the help of a simple substitution1 and we obtain
the angle ' as a function of !:

' D '0 ˙ cos!1

0

B@
`
!

! m˛
`q

2mEC m2˛2
`2

1

CAC const : (4.9)

This solution can conveniently be characterized by the introduction of two parame-
ters, namely

a D `2

m˛
(4.10)

and the eccentricity e

e D

s

1C 2E`2

m˛2
: (4.11)

Hence, by neglecting the integration constant and setting '0 D 0 we arrive at

a
!
D 1C e cos .'/ (4.12)

as the final form of Eq. (4.9). It describes for e > 1 a hyperbola, for e D 1 a parabola,
and for e < 1 an ellipse. The case e D 0 is a special case of the ellipse and describes
a circle with radius ! D a. A more detailed discussion of this result, in particular the

1In particular, we substitute

w D
%
u ! m˛

`2

&"2mE
`2

C m2˛2

`4

#! 1
2

:
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2
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With                   and eccentricity                                   and const=0, 𝜑0=0, we get  
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• we can write the solution for 𝜌 as 𝜌(𝜑)=a/(1+e cos(𝜑))
• and in rectangular coordinates

x(𝜌,𝜑)=𝜌(𝜑) cos(𝜑)
y(𝜌,𝜑)=𝜌(𝜑) sin(𝜑)

e=0

-5 -4 -3 -2 -1

-1.5

-1.0

-0.5

0.5

1.0

1.5

0<e<1

-15 -10 -5

-6

-4

-2

2

4

6

e=1

-2 -1 1 2 3

-3

-2

-1

1

2

3 e>1



Numerical Treatment
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Before, we solved the Kepler problem analytically and 
expressed 𝜑 as function of 𝜌 or inversely 𝜌 as function of 𝜑
Here we solve

numerically. We rewrite: 

and discretize time in tn=t0+n∆t with 𝜌n≡𝜌(tn). So for a timestep 
unit we can write

which is using the rectangular rule:
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For this case, we show in Fig. 4.1 schematically the effective potential (4.3) (solid
black line), together with the gravitational potential U.!/ (dashed-dotted line) and
the centrifugal barrier Umom (dashed line). The gravitational potential (4.6) is now

Fig. 4.1 Schematic illustration of the effective potential Ueff.!/=Ueff.!0/ vs !=!0 (solid line, right
hand scale). Here, !0 is the distance of the minimum in Ueff.!/. Ugrav.!/ (dashed-dotted line)
denotes the gravitational contribution while Umom.!/ (dashed line) denotes the centrifugal barrier.
Both potentials are normalized to Ueff.!0/ (Left hand scale applies)

56 4 The KEPLER Problem

derivation of KEPLER’s laws can be found in any textbook on classical mechanics
[1–6]. We discuss now some numerical aspects.

4.2 Numerical Treatment

In the previous section we solved the KEPLER problem by evaluating the inte-
grand (4.7) expressing the angle ' as a function of the radius !. However, in this
section we aim at solving the integral equation (4.4) numerically with the help of
the methods discussed in the previous chapter. Remember that Eq. (4.4) expresses
the time t as a function of the radius !. This equation has to be inverted, in order to
obtain !.t/, which, in turn, is then inserted into Eq. (4.1) in order to determine the
angle '.t/ as a function of time. This discussion will lead us in a natural way to the
most common techniques applied to solve ordinary differential equations, which is
of no surprise since Eq. (4.4) is the integral representation of Eq. (4.2).

We give a short outline of what we plan to do: We discretize the time axis in
equally spaced time steps "t, i.e. tn D t0 C n"t. Accordingly, we define the radius
! at time t D tn as !.tn/ ! !n. We can use the methods introduced in Chap. 3 to
approximate the integral (4.4) from some !n to !nC1. According to this chapter the
absolute error introduced will behave like ı D j!n "!nC1jK where the explicit value
ofK depends on the method used. However, since the radius ! changes continuously
with time t we know that for sufficiently small values of "t the error ı will also
become arbitrarily small. If we start from some initial values t0 and !0, we can
successively calculate the values !1, !2 , . . . , by applying a small time step "t.

Let us start by rewriting Eq. (4.4) as:

t " t0 D
Z !

!0

d!0 f .!0/ : (4.13)

As we discretized the time axis in equally spaced increments and defined !n ! !.tn/,
we can rewrite (4.13) as

"t D tn " tn!1 D
Z !nC1

!n

d!0f .!0/ : (4.14)

The forward rectangular rule, (3.9), results in the approximation

"t D .!nC1 " !n/ f .!n/ : (4.15)
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Solving for 𝜌n+1 gives

with
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We solve this equation for !nC1 and obtain

!nC1 D h.!n/"tC !n ; (4.16)

where we defined

h.!/ D 1

f .!/
D
r
2

m
ŒE ! Ueff.!/# ; (4.17)

following Eqs. (4.2) and (4.3). As Eq. (4.4) is the integral representation of the ordi-
nary differential equation (4.2), approximation (4.16) corresponds to the approxi-
mation

DC!n D h.!n/ ; (4.18)

where DC!n is the forward difference derivative (2.10a). Since the left hand side
of the discretized differential equation (4.18) is independent of !nC1, this method
is referred to as an explicit method. In particular, consider an ordinary differential
equation of the form

Py D F.y/ : (4.19)

Then the approximation method is referred to as an explicit EULER method if it is
of the form

ynC1 D yn C F.yn/"t : (4.20)

Note that y might be a vector.
Let us use the backward rectangular rule (3.10) to solve Eq. (4.14). We obtain

tnC1 ! tn D .!nC1 ! !n/ f .!nC1/ ; (4.21)

or equivalently

!nC1 D !n C h.!nC1/"t : (4.22)

Again, this corresponds to an approximation of the differential equation (4.2) by

D!!nC1 D h.!nC1/ ; (4.23)

where D!.!nC1/ is the backward difference derivative (2.10b). In this case the
quantity of interest !nC1 still appears in the argument of the function h.!/ and
Eq. (4.22) is an implicit equation for !nC1 which has to be solved. In general, if
the problem (4.19) is approximated by an algorithm of the form

ynC1 D yn C F.ynC1/"t ; (4.24)
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Since the rhs of above eq. does not depend on 𝜌n+1 it is called an explicit method.

An ODE of form                      approximated as
is called explicit Euler scheme (as we used for the pendulum).
Using the backward rectangular rule for the 𝜌 integral gives:

or

which is an implicit method.        Implicit Euler method 

4.2 Numerical Treatment 57

We solve this equation for !nC1 and obtain

!nC1 D h.!n/"tC !n ; (4.16)

where we defined

h.!/ D 1

f .!/
D
r
2

m
ŒE ! Ueff.!/# ; (4.17)

following Eqs. (4.2) and (4.3). As Eq. (4.4) is the integral representation of the ordi-
nary differential equation (4.2), approximation (4.16) corresponds to the approxi-
mation

DC!n D h.!n/ ; (4.18)

where DC!n is the forward difference derivative (2.10a). Since the left hand side
of the discretized differential equation (4.18) is independent of !nC1, this method
is referred to as an explicit method. In particular, consider an ordinary differential
equation of the form

Py D F.y/ : (4.19)

Then the approximation method is referred to as an explicit EULER method if it is
of the form

ynC1 D yn C F.yn/"t : (4.20)

Note that y might be a vector.
Let us use the backward rectangular rule (3.10) to solve Eq. (4.14). We obtain

tnC1 ! tn D .!nC1 ! !n/ f .!nC1/ ; (4.21)

or equivalently

!nC1 D !n C h.!nC1/"t : (4.22)

Again, this corresponds to an approximation of the differential equation (4.2) by

D!!nC1 D h.!nC1/ ; (4.23)

where D!.!nC1/ is the backward difference derivative (2.10b). In this case the
quantity of interest !nC1 still appears in the argument of the function h.!/ and
Eq. (4.22) is an implicit equation for !nC1 which has to be solved. In general, if
the problem (4.19) is approximated by an algorithm of the form

ynC1 D yn C F.ynC1/"t ; (4.24)

4.2 Numerical Treatment 57

We solve this equation for !nC1 and obtain

!nC1 D h.!n/"tC !n ; (4.16)

where we defined

h.!/ D 1

f .!/
D
r
2

m
ŒE ! Ueff.!/# ; (4.17)

following Eqs. (4.2) and (4.3). As Eq. (4.4) is the integral representation of the ordi-
nary differential equation (4.2), approximation (4.16) corresponds to the approxi-
mation

DC!n D h.!n/ ; (4.18)

where DC!n is the forward difference derivative (2.10a). Since the left hand side
of the discretized differential equation (4.18) is independent of !nC1, this method
is referred to as an explicit method. In particular, consider an ordinary differential
equation of the form

Py D F.y/ : (4.19)

Then the approximation method is referred to as an explicit EULER method if it is
of the form

ynC1 D yn C F.yn/"t : (4.20)

Note that y might be a vector.
Let us use the backward rectangular rule (3.10) to solve Eq. (4.14). We obtain

tnC1 ! tn D .!nC1 ! !n/ f .!nC1/ ; (4.21)

or equivalently

!nC1 D !n C h.!nC1/"t : (4.22)

Again, this corresponds to an approximation of the differential equation (4.2) by

D!!nC1 D h.!nC1/ ; (4.23)

where D!.!nC1/ is the backward difference derivative (2.10b). In this case the
quantity of interest !nC1 still appears in the argument of the function h.!/ and
Eq. (4.22) is an implicit equation for !nC1 which has to be solved. In general, if
the problem (4.19) is approximated by an algorithm of the form

ynC1 D yn C F.ynC1/"t ; (4.24)

4.2 Numerical Treatment 57

We solve this equation for !nC1 and obtain

!nC1 D h.!n/"tC !n ; (4.16)

where we defined

h.!/ D 1

f .!/
D
r
2

m
ŒE ! Ueff.!/# ; (4.17)

following Eqs. (4.2) and (4.3). As Eq. (4.4) is the integral representation of the ordi-
nary differential equation (4.2), approximation (4.16) corresponds to the approxi-
mation

DC!n D h.!n/ ; (4.18)

where DC!n is the forward difference derivative (2.10a). Since the left hand side
of the discretized differential equation (4.18) is independent of !nC1, this method
is referred to as an explicit method. In particular, consider an ordinary differential
equation of the form

Py D F.y/ : (4.19)

Then the approximation method is referred to as an explicit EULER method if it is
of the form

ynC1 D yn C F.yn/"t : (4.20)

Note that y might be a vector.
Let us use the backward rectangular rule (3.10) to solve Eq. (4.14). We obtain

tnC1 ! tn D .!nC1 ! !n/ f .!nC1/ ; (4.21)

or equivalently

!nC1 D !n C h.!nC1/"t : (4.22)

Again, this corresponds to an approximation of the differential equation (4.2) by

D!!nC1 D h.!nC1/ ; (4.23)

where D!.!nC1/ is the backward difference derivative (2.10b). In this case the
quantity of interest !nC1 still appears in the argument of the function h.!/ and
Eq. (4.22) is an implicit equation for !nC1 which has to be solved. In general, if
the problem (4.19) is approximated by an algorithm of the form

ynC1 D yn C F.ynC1/"t ; (4.24)

4.2 Numerical Treatment 57

We solve this equation for !nC1 and obtain

!nC1 D h.!n/"tC !n ; (4.16)

where we defined

h.!/ D 1

f .!/
D
r
2

m
ŒE ! Ueff.!/# ; (4.17)

following Eqs. (4.2) and (4.3). As Eq. (4.4) is the integral representation of the ordi-
nary differential equation (4.2), approximation (4.16) corresponds to the approxi-
mation

DC!n D h.!n/ ; (4.18)

where DC!n is the forward difference derivative (2.10a). Since the left hand side
of the discretized differential equation (4.18) is independent of !nC1, this method
is referred to as an explicit method. In particular, consider an ordinary differential
equation of the form

Py D F.y/ : (4.19)

Then the approximation method is referred to as an explicit EULER method if it is
of the form

ynC1 D yn C F.yn/"t : (4.20)

Note that y might be a vector.
Let us use the backward rectangular rule (3.10) to solve Eq. (4.14). We obtain

tnC1 ! tn D .!nC1 ! !n/ f .!nC1/ ; (4.21)

or equivalently

!nC1 D !n C h.!nC1/"t : (4.22)

Again, this corresponds to an approximation of the differential equation (4.2) by

D!!nC1 D h.!nC1/ ; (4.23)

where D!.!nC1/ is the backward difference derivative (2.10b). In this case the
quantity of interest !nC1 still appears in the argument of the function h.!/ and
Eq. (4.22) is an implicit equation for !nC1 which has to be solved. In general, if
the problem (4.19) is approximated by an algorithm of the form

ynC1 D yn C F.ynC1/"t ; (4.24)

4.2 Numerical Treatment 57

We solve this equation for !nC1 and obtain

!nC1 D h.!n/"tC !n ; (4.16)

where we defined

h.!/ D 1

f .!/
D
r
2

m
ŒE ! Ueff.!/# ; (4.17)

following Eqs. (4.2) and (4.3). As Eq. (4.4) is the integral representation of the ordi-
nary differential equation (4.2), approximation (4.16) corresponds to the approxi-
mation

DC!n D h.!n/ ; (4.18)

where DC!n is the forward difference derivative (2.10a). Since the left hand side
of the discretized differential equation (4.18) is independent of !nC1, this method
is referred to as an explicit method. In particular, consider an ordinary differential
equation of the form

Py D F.y/ : (4.19)

Then the approximation method is referred to as an explicit EULER method if it is
of the form

ynC1 D yn C F.yn/"t : (4.20)

Note that y might be a vector.
Let us use the backward rectangular rule (3.10) to solve Eq. (4.14). We obtain

tnC1 ! tn D .!nC1 ! !n/ f .!nC1/ ; (4.21)

or equivalently

!nC1 D !n C h.!nC1/"t : (4.22)

Again, this corresponds to an approximation of the differential equation (4.2) by

D!!nC1 D h.!nC1/ ; (4.23)

where D!.!nC1/ is the backward difference derivative (2.10b). In this case the
quantity of interest !nC1 still appears in the argument of the function h.!/ and
Eq. (4.22) is an implicit equation for !nC1 which has to be solved. In general, if
the problem (4.19) is approximated by an algorithm of the form

ynC1 D yn C F.ynC1/"t ; (4.24)

4.2 Numerical Treatment 57

We solve this equation for !nC1 and obtain

!nC1 D h.!n/"tC !n ; (4.16)

where we defined

h.!/ D 1

f .!/
D
r
2

m
ŒE ! Ueff.!/# ; (4.17)

following Eqs. (4.2) and (4.3). As Eq. (4.4) is the integral representation of the ordi-
nary differential equation (4.2), approximation (4.16) corresponds to the approxi-
mation

DC!n D h.!n/ ; (4.18)

where DC!n is the forward difference derivative (2.10a). Since the left hand side
of the discretized differential equation (4.18) is independent of !nC1, this method
is referred to as an explicit method. In particular, consider an ordinary differential
equation of the form

Py D F.y/ : (4.19)

Then the approximation method is referred to as an explicit EULER method if it is
of the form

ynC1 D yn C F.yn/"t : (4.20)

Note that y might be a vector.
Let us use the backward rectangular rule (3.10) to solve Eq. (4.14). We obtain

tnC1 ! tn D .!nC1 ! !n/ f .!nC1/ ; (4.21)

or equivalently

!nC1 D !n C h.!nC1/"t : (4.22)

Again, this corresponds to an approximation of the differential equation (4.2) by

D!!nC1 D h.!nC1/ ; (4.23)

where D!.!nC1/ is the backward difference derivative (2.10b). In this case the
quantity of interest !nC1 still appears in the argument of the function h.!/ and
Eq. (4.22) is an implicit equation for !nC1 which has to be solved. In general, if
the problem (4.19) is approximated by an algorithm of the form

ynC1 D yn C F.ynC1/"t ; (4.24)



Implicit method

A. Glatz: Computational Physics 9

In general, the implicit Euler method is not analytically solvable à need 
numerical methods (implies numerical error)
For the the Kepler problem we can solve it analytically since it is a 4th order 
polynomial:

but it is tedious (see Ferrari’s method).

We can also use the central rectangular rule:

or

in general:
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it is referred to as an implicit EULER method. Note that the implicit equation (4.24)
might be analytically unsolvable. Hence, one has to employ a numerical method to
solve (4.24) which will also imply a numerical error. However, in the particular case
of Eq. (4.22) we can solve it analytically since it is a fourth order polynomial in !nC1
of the form

!4nC1 ! 2!n!
3
nC1 C

!
!2n ! 2E"t2

m

"
!2nC1 ! 2˛"t2

m
!nC1 C

`2"t2

m2
D 0 : (4.25)

The solution of this equation is quite tedious and will not be discussed here,
however, the method one employs is referred to as FERRARI’s method [7].

A natural way to proceed is to regard the central rectangular rule (3.13) in a next
step. Within this approximation we obtain for Eq. (4.13)

"t D .!nC1 ! !n/f
!
!nC1 C !n

2

"
; (4.26)

which is equivalent to the implicit equation

!nC1 D !n C h
!
!nC1 C !n

2

"
"t : (4.27)

It can be written as an approximation to Eq. (4.2) with help of the central difference
derivative Dc!nC 1

2
:

Dc!nC 1
2
D h

!
!nC1 C !n

2

"
: (4.28)

In general, for a problem of the form (4.19) a method of the form

ynC1 D yn C F
!
ynC1 C yn

2

"
"t ; (4.29)

is referred to as the implicit midpoint rule. We note that this method might be more
accurate since the error of the rectangular rule scales like O."t2/ while the error of
the forward and backward rectangular rules scale like O."t/. Nevertheless, in case
of the KEPLER problem, one can solve the implicit equation (4.27) analytically for
!nC1 which is certainly of advantage.

In this chapter the KEPLER problem was instrumental in introducing three
commonmethods which can be employed to solve numerically ordinary differential
equations of the form (4.19). More general and advanced methods to solve ordinary
differential equations and a more systematic description of these methods will be
offered in the next chapter.

However, let us discuss another point before proceeding to the chapter on
the numerics of ordinary differential equations. As demonstrated in Sect. 1.3 the
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implicit midpoint rule



errors

A. Glatz: Computational Physics 10

The error of the forward (explicit) and backward (implicit) 
rectangular rules is of order ∆t, while being ∆t2 for the implicit 
midpoint rule.
In any case the consequence is that energy and angular 
momentum will not be conserved. I.e. deviations from the 
analytical trajectories can be expected!



à Lab Thursday
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Read Appendix A for more details of the two-body problem.

Implement explicit method to solve for r(𝜑) and r(t) 

Use:
• python
• C/C++

Plotting tools (suggestion):
• gnuplot, LabPlot
• Jupyter


