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» Numerical Treatment

Kepler Problem
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Model

* The Kepler problem is a special case of the two-body problem.
* two-body potential U(|r;-r,|) = Lagrange function:

Pt . P
L(ri,r2,p1,p2) = Z—nil + Z—niz —U(lr —r2)

* reducible to two-dimensional motion of point particle with
reduce mass m in central potential U

 Energy, E, and angular momentum, ¢, are conserved
 rotational symmetry = use polar coordinates (p,®)

4

Equations of motion 0 = ——
. mp>
(EoM) for relative

coordinate:

| ) 12
(see Appendix A for derivation) P = + % E — U(,O) T 2m,02




£: angular

2 momentum
* define effective potential:  U.(p) = U(p) +
2mp?
* Separation of variables in the EoM for p yields: mom
p ) -1 “centrifugal
t=1y £ / dp’ % —[E- Ueff(,O/)]} barrier”
00 m

where py=p(t,) is the initial condition at time t,
* similarly for @ with dt=dp/(dp/dt):

1
d do dt 14 2 L3 2
dpo drdp mp? | m 2mp?

Pl (2 7
> @¢=@ox | dp mp? | m |E — Uetr(p) ]
P

with @o=¢(ty)



potential

For the Kepler problem we use the gravitational potential:

20+
1.5 F
1.0 |

0.5

0.0

U(p)/IU (po)l

-0.5 F

U_(P)1U (po)l

-1.0 |

-1.5

2.0 . ] . ] . ] . ]
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solution for @

Using the gravitational potential, we have to calculate:

b T2 o« 02\
—p+ | d “E+=-
v /po e [m ( T 2mp’2)}

with substitution u=1/p 7 ymE  2ma =3
¢ =q¢o+ f [ 2}

1

This integral can be calculated and results in

© = @y cos™!

mo mot

2 + ecos (¢)

. 02 - 2E(2
With a = — and eccentricity ¢ = /1 + > and const=0, ¢,=0, we get

A. Glatz: Computational Physics



Different type of solutions

« we can write the solution for p as p(p)=a/(1+e cos(p))
 and in rectangular coordinates

x(p,@)=p(p) cos(p)
v(p,9)=p(p) sin(p) \

e=0 05\

-10 -0.5
—051

A. Glatz: Computational Physics 6




Numerical Treatment

Before, we solved the Kepler problem analytically and
expressed ¢ as function of p or inversely p as function of @

Here we solve
I =1y =L /
o

p o) 2
dp’ { - |E - Ueff(p,)]}

numerically. We rewrite:

0
t— 1y = f dof(p")
0

0

and discretize time in t =ty,+nAt with p,=p(t,). So for a timestep
unit we can write

Pn—+1
At =ty — ly—1 = / d,O,f(,O/)

Pn

which is using the rectangular rule: | Az (Pnt1 — Pn)f(on)

A. Glatz: Computational Physics




Solving for p,.; gives = h(p,) At + — Dip, = h(p,)

1

with h(p) — f(lo) —

\/% [E — Ueti(p)]

Since the rhs of above eq. does not depend on p,,,; it is called an explicit method.

An ODE of form y = F(y) approximated as y,+1 = y, + F(y,) At
is called explicit Euler scheme (as we used for the pendulum).
Using the backward rectangular rule for the p integral gives:

i1 — th = (Ppt1 — Pr) f(Pnt1)
o = Pn + 1 At = D_pyt1 = h(pnt1)

which is an implicit method. y, .| =y, + F(}’n—l—l)At Implicit Euler method

A. Glatz: Computational Physics



Implicit method

In general, the implicit Euler method is not analytically solvable = need
numerical methods (implies numerical error)

For the the Kepler problem we can solve it analytically since it is a 41" order
polynomial:

b (2 2EAFYN 20AF N A 0
Pr+1 PnPpn41 Pr Pn+1 m Pn+1 m2
but it is tedious (see Ferrari’s method).
We can also use the central rectangular rule:
Pn+1 + Pn
At = (Pn+1 — pn)f( 5 )
of Pr+1 + Pn

Pn+1 + Pn
At > Depyyy = h( 2 )

Pnt1 = Pn+ N

in general: Vot1l = Y + F (y”+12+ y”) At implicit midpoint rule

A. Glatz: Computational Physics 9



errors

The error of the forward (explicit) and backward (implicit)
rectangular rules is of order At, while being At? for the implicit
midpoint rule.

In any case the consequence is that energy and angular
momentum will not be conserved. |.e. deviations from the
analytical trajectories can be expected!



- Lab Thursday

Implement explicit method to solve for r(¢) and r(t)

Use:
* python
* C/C++

Plotting tools (suggestion):
* gnuplot, LabPlot
* Jupyter

Read Appendix A for more details of the two-body problem.




