

Model

- The Kepler problem is a special case of the two-body problem.
- two-body potential $U(|\mathbf{r_1-r_2}|) \rightarrow$ Lagrange function:

$$L(r_1, r_2, p_1, p_2) = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} - U(|r_1 - r_2|)$$

- reducible to two-dimensional motion of point particle with reduce mass m in central potential U
- Energy, E, and angular momentum, ℓ , are conserved
- rotational symmetry \rightarrow use polar coordinates (ρ, φ)

Equations of motion (EoM) for relative coordinate:

(see Appendix A for derivation)

$$\dot{\varphi} = \frac{\ell}{m\rho^2}$$

$$\dot{\rho} = \pm \sqrt{\frac{2}{m}} \left[E - U(\rho) - \frac{\ell^2}{2m\rho^2} \right]$$

ℓ: angular momentum

define effective potential:

$$U_{\rm eff}(\rho) = U(\rho) + \frac{\ell^2}{2m\rho^2}$$

• Separation of variables in the EoM for ρ yields:

$$t = t_0 \pm \int_{\rho_0}^{\rho} \mathrm{d}\rho' \left\{ \frac{2}{m} \left[E - U_{\text{eff}}(\rho') \right] \right\}^{-\frac{1}{2}}$$

U_{mon}
"centrifugal
barrier"

where $\rho_0 \equiv \rho(t_0)$ is the initial condition at time t_0

• similarly for φ with dt=d ρ /(d ρ /dt):

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\rho} = \frac{\mathrm{d}\varphi}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}\rho} = \pm \frac{|\ell|}{m\rho^2} \left[\frac{2}{m} \left(E - U(\rho) - \frac{|\ell|^2}{2m\rho^2} \right) \right]^{-\frac{1}{2}}$$

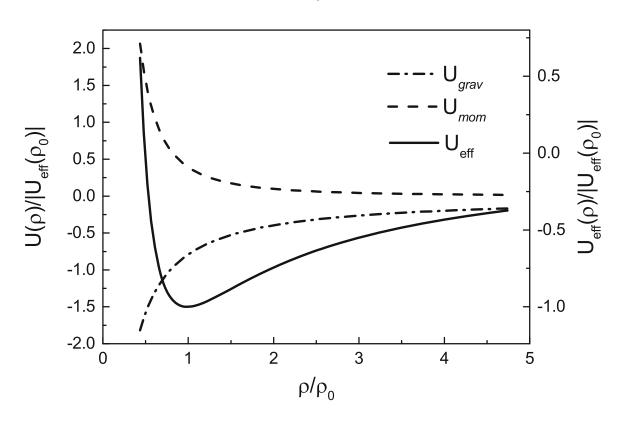
$$\Rightarrow \quad \varphi = \varphi_0 \pm \int_{\rho_0}^{\rho} d\rho' \frac{\ell}{m\rho'^2} \left\{ \frac{2}{m} \left[E - U_{\text{eff}}(\rho') \right] \right\}^{-\frac{1}{2}}$$

with $\varphi_0 = \varphi(t_0)$

potential

For the Kepler problem we use the gravitational potential:

$$U(\rho) = -\frac{\alpha}{\rho}, \quad \alpha > 0$$



solution for ϕ

Using the gravitational potential, we have to calculate:

$$\varphi = \varphi_0 \pm \int_{\rho_0}^{\rho} \mathrm{d}\rho' \frac{\ell}{m\rho'^2} \left[\frac{2}{m} \left(E + \frac{\alpha}{\rho'} - \frac{\ell^2}{2m\rho'^2} \right) \right]^{-\frac{1}{2}}$$

with substitution $u=1/\rho$

$$\varphi = \varphi_0 \mp \int_{u_1}^{u_2} du \left[\frac{2mE}{\ell^2} + \frac{2m\alpha}{\ell^2} u - u^2 \right]^{-\frac{1}{2}}$$

This integral can be calculated and results in

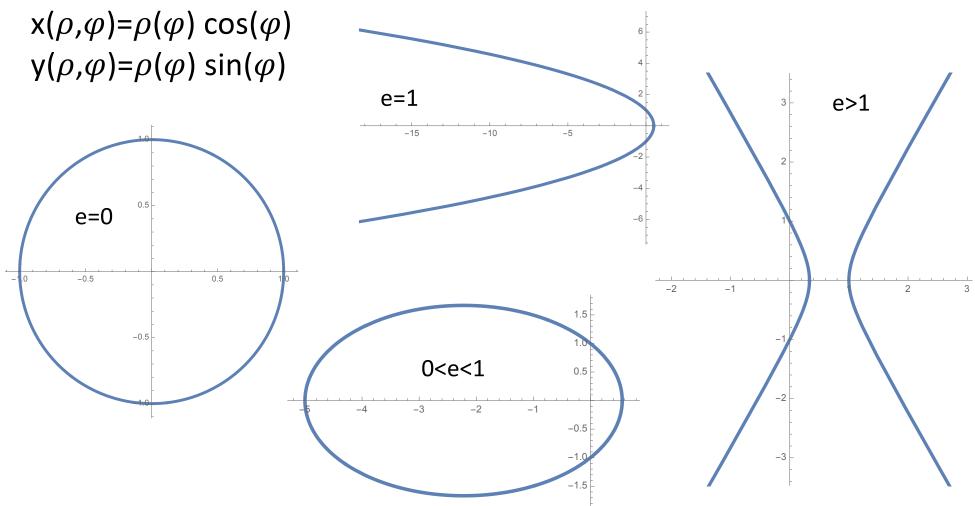
$$\varphi = \varphi_0 \pm \cos^{-1} \left(\frac{\frac{\ell}{\rho} - \frac{m\alpha}{\ell}}{\sqrt{2mE + \frac{m^2\alpha^2}{\ell^2}}} \right) + \text{const}$$

With
$$a=rac{\ell^2}{mlpha}$$
 and eccentricity $e=\sqrt{1+rac{2E\ell^2}{mlpha^2}}$ and const=0, $arphi_0$ =0, we get

$$\frac{a}{\rho} = 1 + e\cos(\varphi)$$

Different type of solutions

- we can write the solution for ρ as $\rho(\varphi)=a/(1+e\cos(\varphi))$
- and in rectangular coordinates



6

Numerical Treatment

Before, we solved the Kepler problem analytically and expressed φ as function of ρ or inversely ρ as function of φ

Here we solve

$$t = t_0 \pm \int_{\rho_0}^{\rho} d\rho' \left\{ \frac{2}{m} \left[E - U_{\text{eff}}(\rho') \right] \right\}^{-\frac{1}{2}}$$

numerically. We rewrite:

$$t - t_0 = \int_{\rho_0}^{\rho} \mathrm{d}\rho' f(\rho')$$

and discretize time in $t_n=t_0+n\Delta t$ with $\rho_n\equiv\rho(t_n)$. So for a timestep unit we can write

$$\Delta t = t_n - t_{n-1} = \int_{\rho_n}^{\rho_{n+1}} \mathrm{d}\rho' f(\rho')$$

which is using the rectangular rule:

$$\Delta t = (\rho_{n+1} - \rho_n) f(\rho_n)$$

Solving for
$$\rho_{n+1}$$
 gives $\rho_{n+1} = h(\rho_n)\Delta t + \rho_n \longrightarrow D_+\rho_n = h(\rho_n)$

with

$$h(\rho) = \frac{1}{f(\rho)} = \sqrt{\frac{2}{m}} \left[E - U_{\text{eff}}(\rho) \right]$$

Since the rhs of above eq. does not depend on ρ_{n+1} it is called an explicit method.

An ODE of form $\dot{y} = F(y)$ approximated as $y_{n+1} = y_n + F(y_n)\Delta t$ is called explicit Euler scheme (as we used for the pendulum). Using the backward rectangular rule for the ρ integral gives:

$$t_{n+1} - t_n = (\rho_{n+1} - \rho_n) f(\rho_{n+1})$$

or

$$\rho_{n+1} = \rho_n + h(\rho_{n+1})\Delta t \qquad \longrightarrow D_{-\rho_{n+1}} = h(\rho_{n+1})$$

$$\longrightarrow D_{-}\rho_{n+1} = h(\rho_{n+1})$$

which is an implicit method. $y_{n+1} = y_n + F(y_{n+1})\Delta t$ Implicit Euler method

Implicit method

In general, the implicit Euler method is not analytically solvable \rightarrow need numerical methods (implies numerical error)

For the Kepler problem we can solve it analytically since it is a 4th order polynomial:

$$\rho_{n+1}^4 - 2\rho_n \rho_{n+1}^3 + \left(\rho_n^2 - \frac{2E\Delta t^2}{m}\right)\rho_{n+1}^2 - \frac{2\alpha\Delta t^2}{m}\rho_{n+1} + \frac{\ell^2\Delta t^2}{m^2} = 0$$

but it is tedious (see Ferrari's method).

We can also use the central rectangular rule:

$$\Delta t = (\rho_{n+1} - \rho_n) f\left(\frac{\rho_{n+1} + \rho_n}{2}\right)$$

or

$$\rho_{n+1} = \rho_n + h\left(\frac{\rho_{n+1} + \rho_n}{2}\right) \Delta t \longrightarrow D_c \rho_{n+\frac{1}{2}} = h\left(\frac{\rho_{n+1} + \rho_n}{2}\right)$$

in general:

$$y_{n+1} = y_n + F\left(\frac{y_{n+1} + y_n}{2}\right) \Delta t$$
 implicit midpoint rule

errors

The error of the forward (explicit) and backward (implicit) rectangular rules is of order Δt , while being Δt^2 for the implicit midpoint rule.

In any case the consequence is that energy and angular momentum will not be conserved. I.e. deviations from the analytical trajectories can be expected!

10

→ Lab Thursday

Implement explicit method to solve for $\mathbf{r}(\varphi)$ and $\mathbf{r}(\mathsf{t})$

Use:

- python
- C/C++

Plotting tools (suggestion):

- gnuplot, LabPlot
- Jupyter

Read Appendix A for more details of the two-body problem.

A. Glatz: Computational Physics