
Computational Physics

Ordinary Differential Equations:
Initial Value Problems

Ø Overview
Ø Simple integrators
Ø Runge-Kutta Methods
Ø Examples

Initial value problem

A. Glatz: Computational Physics 2

We already introduced explicit, implicit, and midpoint Euler
methods. Now we introduce a more general context.

• Initial value problem:

assumes an explicit form, meaning in
G(.) is analytically invertible.

E.g. differential equations of form
are not explicit.

Chapter 5
Ordinary Differential Equations: Initial Value
Problems

5.1 Introduction

This chapter introduces common numeric methods designed to solve initial value
problems. The discussion of the KEPLER problem in the previous chapter allowed
the introduction of three concepts, namely the implicit EULER method, the explicit
EULER method, and the implicit midpoint rule. Furthermore, we mentioned the
symplectic EULER method. In this chapter we plan to put these methods into a more
general context and to discuss more advanced techniques.

Let us define the problem: We consider initial value problems of the form

(
Py.t/ D f .y; t/ ;

y.0/ D y0 ;
(5.1)

where y.t/ ! y is an n-dimensional vector and y0 is referred to as the initial value
of y. Some remarks about the form of Eq. (5.1) are required:

(i) We note that by posing Eq. (5.1), we assume that the differential equation is
explicit in Py, i.e. initial value problems of the form

(
G.Py/ D f .y; t/ ;

y.0/ D y0 ;
(5.2)

are only considered if G.Py/ is analytically invertible. For instance, we will not
deal with differential equations of the form

PyC log .Py/ D 1 : (5.3)

© Springer International Publishing Switzerland 2016
B.A. Stickler, E. Schachinger, Basic Concepts in Computational Physics,
DOI 10.1007/978-3-319-27265-8_5

63

Chapter 5
Ordinary Differential Equations: Initial Value
Problems

5.1 Introduction

This chapter introduces common numeric methods designed to solve initial value
problems. The discussion of the KEPLER problem in the previous chapter allowed
the introduction of three concepts, namely the implicit EULER method, the explicit
EULER method, and the implicit midpoint rule. Furthermore, we mentioned the
symplectic EULER method. In this chapter we plan to put these methods into a more
general context and to discuss more advanced techniques.

Let us define the problem: We consider initial value problems of the form

(
Py.t/ D f .y; t/ ;

y.0/ D y0 ;
(5.1)

where y.t/ ! y is an n-dimensional vector and y0 is referred to as the initial value
of y. Some remarks about the form of Eq. (5.1) are required:

(i) We note that by posing Eq. (5.1), we assume that the differential equation is
explicit in Py, i.e. initial value problems of the form

(
G.Py/ D f .y; t/ ;

y.0/ D y0 ;
(5.2)

are only considered if G.Py/ is analytically invertible. For instance, we will not
deal with differential equations of the form

PyC log .Py/ D 1 : (5.3)

© Springer International Publishing Switzerland 2016
B.A. Stickler, E. Schachinger, Basic Concepts in Computational Physics,
DOI 10.1007/978-3-319-27265-8_5

63

Chapter 5
Ordinary Differential Equations: Initial Value
Problems

5.1 Introduction

This chapter introduces common numeric methods designed to solve initial value
problems. The discussion of the KEPLER problem in the previous chapter allowed
the introduction of three concepts, namely the implicit EULER method, the explicit
EULER method, and the implicit midpoint rule. Furthermore, we mentioned the
symplectic EULER method. In this chapter we plan to put these methods into a more
general context and to discuss more advanced techniques.

Let us define the problem: We consider initial value problems of the form

(
Py.t/ D f .y; t/ ;

y.0/ D y0 ;
(5.1)

where y.t/ ! y is an n-dimensional vector and y0 is referred to as the initial value
of y. Some remarks about the form of Eq. (5.1) are required:

(i) We note that by posing Eq. (5.1), we assume that the differential equation is
explicit in Py, i.e. initial value problems of the form

(
G.Py/ D f .y; t/ ;

y.0/ D y0 ;
(5.2)

are only considered if G.Py/ is analytically invertible. For instance, we will not
deal with differential equations of the form

PyC log .Py/ D 1 : (5.3)

© Springer International Publishing Switzerland 2016
B.A. Stickler, E. Schachinger, Basic Concepts in Computational Physics,
DOI 10.1007/978-3-319-27265-8_5

63

𝑦̇ ≡
𝑑𝑦
𝑑𝑡

Higher order differential equations

A. Glatz: Computational Physics 3

• the above Eq. is a first order differential equation in y
• However, every explicit differential equation of order n

can be decomposed in n coupled first order differential
equations:

ó

i.e. the differential equation is explicit if explicit in y(n)

64 5 Ordinary Differential Equations: Initial Value Problems

(ii) We note that Eq. (5.1) is a first order differential equation in y. However, this
is in fact not a restriction since we can transform every explicit differential
equation of order n into a coupled set of explicit first order differential
equations. Let us demonstrate this. We regard an explicit differential equation
of the form

y.n/ D f .tI y; Py; Ry; : : : ; y.n!1// ; (5.4)

where we defined y.k/ ! dk

dtk y. This equation is equivalent to the set

Py1 D y2 ;

Py2 D y3 ;

:::
:::

Pyn!1 D yn ;

Pyn D f .t; y1; y2; : : : ; yn/ ; (5.5)

which can be written as Eq. (5.1). Hence, we can attenuate the criterion
discussed in point (i), that the differential equation has to be explicit in Py, to
the criterion that the differential equation of order n has to be explicit in the
n-th derivative of y, namely y.n/.

There is another point required to be discussed before moving on. The numerical
treatment of initial value problems is of eminent importance in physics because
many differential equations, which appear unspectacular at first glance, cannot be
solved analytically. For instance, consider a first order differential equation of the
type:

Py D t2 C y2 : (5.6)

Although this equation appears to be simple, one has to rely on numerical methods
to obtain a solution. However, Eq. (5.6) is not well posed since the solution is
ambiguous as long as no initial values are given. A numerical solution is only
possible if the problem is completely defined. In many cases, one uses numerical
methods although the problem is solvable with the help of analytic methods, simply
because the solution would be too complicated. A numerical approach might be
justified, however, one should always remember that, quote [1]:

Numerical methods are no excuse for poor analysis.

This chapter will be augmented by a chapter on the double pendulum, which
will serve as a demonstration of the applicability of RUNGE-KUTTA methods and
by a chapter on molecular dynamics which will demonstrate the applicability of the
leap-frog algorithm.

64 5 Ordinary Differential Equations: Initial Value Problems

(ii) We note that Eq. (5.1) is a first order differential equation in y. However, this
is in fact not a restriction since we can transform every explicit differential
equation of order n into a coupled set of explicit first order differential
equations. Let us demonstrate this. We regard an explicit differential equation
of the form

y.n/ D f .tI y; Py; Ry; : : : ; y.n!1// ; (5.4)

where we defined y.k/ ! dk

dtk y. This equation is equivalent to the set

Py1 D y2 ;

Py2 D y3 ;

:::
:::

Pyn!1 D yn ;

Pyn D f .t; y1; y2; : : : ; yn/ ; (5.5)

which can be written as Eq. (5.1). Hence, we can attenuate the criterion
discussed in point (i), that the differential equation has to be explicit in Py, to
the criterion that the differential equation of order n has to be explicit in the
n-th derivative of y, namely y.n/.

There is another point required to be discussed before moving on. The numerical
treatment of initial value problems is of eminent importance in physics because
many differential equations, which appear unspectacular at first glance, cannot be
solved analytically. For instance, consider a first order differential equation of the
type:

Py D t2 C y2 : (5.6)

Although this equation appears to be simple, one has to rely on numerical methods
to obtain a solution. However, Eq. (5.6) is not well posed since the solution is
ambiguous as long as no initial values are given. A numerical solution is only
possible if the problem is completely defined. In many cases, one uses numerical
methods although the problem is solvable with the help of analytic methods, simply
because the solution would be too complicated. A numerical approach might be
justified, however, one should always remember that, quote [1]:

Numerical methods are no excuse for poor analysis.

This chapter will be augmented by a chapter on the double pendulum, which
will serve as a demonstration of the applicability of RUNGE-KUTTA methods and
by a chapter on molecular dynamics which will demonstrate the applicability of the
leap-frog algorithm.

Numerical solutions

A. Glatz: Computational Physics 4

Even seemingly simple differential equations cannot be solved
analytically and need numerical treatment, e.g.:

is difficult to solve and not well posed: no initial condition given
But: Numerical methods are no excuse for poor analysis
(Sometimes numerical solutions are used even when an
analytical solution is possible.)

Next, we discretize t again as tn=t0+n∆t and yn=y(tn), i.e.

64 5 Ordinary Differential Equations: Initial Value Problems

(ii) We note that Eq. (5.1) is a first order differential equation in y. However, this
is in fact not a restriction since we can transform every explicit differential
equation of order n into a coupled set of explicit first order differential
equations. Let us demonstrate this. We regard an explicit differential equation
of the form

y.n/ D f .tI y; Py; Ry; : : : ; y.n!1// ; (5.4)

where we defined y.k/ ! dk

dtk y. This equation is equivalent to the set

Py1 D y2 ;

Py2 D y3 ;

:::
:::

Pyn!1 D yn ;

Pyn D f .t; y1; y2; : : : ; yn/ ; (5.5)

which can be written as Eq. (5.1). Hence, we can attenuate the criterion
discussed in point (i), that the differential equation has to be explicit in Py, to
the criterion that the differential equation of order n has to be explicit in the
n-th derivative of y, namely y.n/.

There is another point required to be discussed before moving on. The numerical
treatment of initial value problems is of eminent importance in physics because
many differential equations, which appear unspectacular at first glance, cannot be
solved analytically. For instance, consider a first order differential equation of the
type:

Py D t2 C y2 : (5.6)

Although this equation appears to be simple, one has to rely on numerical methods
to obtain a solution. However, Eq. (5.6) is not well posed since the solution is
ambiguous as long as no initial values are given. A numerical solution is only
possible if the problem is completely defined. In many cases, one uses numerical
methods although the problem is solvable with the help of analytic methods, simply
because the solution would be too complicated. A numerical approach might be
justified, however, one should always remember that, quote [1]:

Numerical methods are no excuse for poor analysis.

This chapter will be augmented by a chapter on the double pendulum, which
will serve as a demonstration of the applicability of RUNGE-KUTTA methods and
by a chapter on molecular dynamics which will demonstrate the applicability of the
leap-frog algorithm.

5.2 Simple Integrators 65

5.2 Simple Integrators

We start by reintroducing the methods already discussed in the previous chapter.
Again, we discretize the time coordinate t via the relation tn D t0 C n!t and
define fn ! f .tn/ accordingly. In the following we will refrain from noting the initial
condition explicitly for a more compact notation. We investigate Eq. (5.1) at some
particular time tn:

Pyn D f .yn; tn/ : (5.7)

Integrating both sides of (5.7) over the interval Œtn; tnC1" gives

ynC1 D yn C
Z tnC1

tn
dt0f Œy.t0/; t0" : (5.8)

Note that Eq. (5.8) is exact and it will be our starting point in the discussion of
several paths to a numeric solution of initial value problems. These solutions will
be based on an approximation of the integral on the right hand side of Eq. (5.8) with
the help of the methods already discussed in Chap. 3.

In the following we list four of the best known simple integration methods for
initial value problems:

(1) Applying the forward rectangular rule (3.9) to Eq. (5.8) yields

ynC1 D yn C f .yn; tn/!tC O.!t2/ ; (5.9)

which is the explicit EULER method we encountered already in Sect. 4.2. This
method is also referred to as the forward EULER method. In accordance to
the forward rectangular rule, the leading term of the error of this method is
proportional to !t2 as was pointed out in Sect. 3.2.

(2) We use the backward rectangular rule (3.10) in Eq. (5.8) and obtain

ynC1 D yn C f .ynC1; tnC1/!tCO.!t2/ ; (5.10)

which is the implicit EULER method, also referred to as backward EULER

method. As already highlighted in Sect. 4.2, it may be necessary to solve
Eq. (5.10) numerically for ynC1. (Some notes on the numeric solution of non-
linear equations can be found in Appendix B.)

(3) The central rectangular rule (3.13) approximates Eq. (5.8) by

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/!tC O.!t3/ ; (5.11)

and we rewrite this equation in the form:

ynC1 D yn!1 C 2f .yn; tn/!tCO.!t3/ : (5.12)

Simple Integrators

A. Glatz: Computational Physics 5

Integration the above differential equation over a ∆t interval:

Note: This is still exact!

Approximations for the integral:
• rectangular rule gives:

Explicit or forward Euler method

Note, 𝒪(∆t2) means the following terms in this Taylor series are of order ∆t2 or
higher.

5.2 Simple Integrators 65

5.2 Simple Integrators

We start by reintroducing the methods already discussed in the previous chapter.
Again, we discretize the time coordinate t via the relation tn D t0 C n!t and
define fn ! f .tn/ accordingly. In the following we will refrain from noting the initial
condition explicitly for a more compact notation. We investigate Eq. (5.1) at some
particular time tn:

Pyn D f .yn; tn/ : (5.7)

Integrating both sides of (5.7) over the interval Œtn; tnC1" gives

ynC1 D yn C
Z tnC1

tn
dt0f Œy.t0/; t0" : (5.8)

Note that Eq. (5.8) is exact and it will be our starting point in the discussion of
several paths to a numeric solution of initial value problems. These solutions will
be based on an approximation of the integral on the right hand side of Eq. (5.8) with
the help of the methods already discussed in Chap. 3.

In the following we list four of the best known simple integration methods for
initial value problems:

(1) Applying the forward rectangular rule (3.9) to Eq. (5.8) yields

ynC1 D yn C f .yn; tn/!tC O.!t2/ ; (5.9)

which is the explicit EULER method we encountered already in Sect. 4.2. This
method is also referred to as the forward EULER method. In accordance to
the forward rectangular rule, the leading term of the error of this method is
proportional to !t2 as was pointed out in Sect. 3.2.

(2) We use the backward rectangular rule (3.10) in Eq. (5.8) and obtain

ynC1 D yn C f .ynC1; tnC1/!tCO.!t2/ ; (5.10)

which is the implicit EULER method, also referred to as backward EULER

method. As already highlighted in Sect. 4.2, it may be necessary to solve
Eq. (5.10) numerically for ynC1. (Some notes on the numeric solution of non-
linear equations can be found in Appendix B.)

(3) The central rectangular rule (3.13) approximates Eq. (5.8) by

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/!tC O.!t3/ ; (5.11)

and we rewrite this equation in the form:

ynC1 D yn!1 C 2f .yn; tn/!tCO.!t3/ : (5.12)

5.2 Simple Integrators 65

5.2 Simple Integrators

We start by reintroducing the methods already discussed in the previous chapter.
Again, we discretize the time coordinate t via the relation tn D t0 C n!t and
define fn ! f .tn/ accordingly. In the following we will refrain from noting the initial
condition explicitly for a more compact notation. We investigate Eq. (5.1) at some
particular time tn:

Pyn D f .yn; tn/ : (5.7)

Integrating both sides of (5.7) over the interval Œtn; tnC1" gives

ynC1 D yn C
Z tnC1

tn
dt0f Œy.t0/; t0" : (5.8)

Note that Eq. (5.8) is exact and it will be our starting point in the discussion of
several paths to a numeric solution of initial value problems. These solutions will
be based on an approximation of the integral on the right hand side of Eq. (5.8) with
the help of the methods already discussed in Chap. 3.

In the following we list four of the best known simple integration methods for
initial value problems:

(1) Applying the forward rectangular rule (3.9) to Eq. (5.8) yields

ynC1 D yn C f .yn; tn/!tC O.!t2/ ; (5.9)

which is the explicit EULER method we encountered already in Sect. 4.2. This
method is also referred to as the forward EULER method. In accordance to
the forward rectangular rule, the leading term of the error of this method is
proportional to !t2 as was pointed out in Sect. 3.2.

(2) We use the backward rectangular rule (3.10) in Eq. (5.8) and obtain

ynC1 D yn C f .ynC1; tnC1/!tCO.!t2/ ; (5.10)

which is the implicit EULER method, also referred to as backward EULER

method. As already highlighted in Sect. 4.2, it may be necessary to solve
Eq. (5.10) numerically for ynC1. (Some notes on the numeric solution of non-
linear equations can be found in Appendix B.)

(3) The central rectangular rule (3.13) approximates Eq. (5.8) by

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/!tC O.!t3/ ; (5.11)

and we rewrite this equation in the form:

ynC1 D yn!1 C 2f .yn; tn/!tCO.!t3/ : (5.12)

compare to Big- 𝒪 -notation

A. Glatz: Computational Physics 6

Informal usage in Computer Science (and not in the mathematical sense):

An algorithm can be said to exhibit a growth rate on the order of a mathematical function if
beyond a certain input size n, the function f(n) times a positive constant provides an upper
bound or limit for the run-time of that algorithm.
In other words, for a given input size n greater than some n0 and a constant c, the running
time of that algorithm will never be larger than c × f(n). This concept is frequently expressed
using Big- 𝒪 -notation. For example, since the run-time of insertion sort grows quadratically
as its input size increases, insertion sort can be said to be of order 𝒪(n²).

Big- 𝒪 -notation is a convenient way to express the worst-case scenario for a given
algorithm, although it can also be used to express the average-case — for example, the
worst-case scenario for quicksort is 𝒪(n²), but the average-case run-time is 𝒪(n log n).

See also Computational complexity theory

more simple integrators

A. Glatz: Computational Physics 7

• the backward rectangular rule gives:

implicit or backward Euler method/scheme
à needs solving for yn+1

• central rectangular rule

or
using two time steps
leap-frog routine or Störmer-Verlet method

using gives the implicit midpoint rule

5.2 Simple Integrators 65

5.2 Simple Integrators

We start by reintroducing the methods already discussed in the previous chapter.
Again, we discretize the time coordinate t via the relation tn D t0 C n!t and
define fn ! f .tn/ accordingly. In the following we will refrain from noting the initial
condition explicitly for a more compact notation. We investigate Eq. (5.1) at some
particular time tn:

Pyn D f .yn; tn/ : (5.7)

Integrating both sides of (5.7) over the interval Œtn; tnC1" gives

ynC1 D yn C
Z tnC1

tn
dt0f Œy.t0/; t0" : (5.8)

Note that Eq. (5.8) is exact and it will be our starting point in the discussion of
several paths to a numeric solution of initial value problems. These solutions will
be based on an approximation of the integral on the right hand side of Eq. (5.8) with
the help of the methods already discussed in Chap. 3.

In the following we list four of the best known simple integration methods for
initial value problems:

(1) Applying the forward rectangular rule (3.9) to Eq. (5.8) yields

ynC1 D yn C f .yn; tn/!tC O.!t2/ ; (5.9)

which is the explicit EULER method we encountered already in Sect. 4.2. This
method is also referred to as the forward EULER method. In accordance to
the forward rectangular rule, the leading term of the error of this method is
proportional to !t2 as was pointed out in Sect. 3.2.

(2) We use the backward rectangular rule (3.10) in Eq. (5.8) and obtain

ynC1 D yn C f .ynC1; tnC1/!tCO.!t2/ ; (5.10)

which is the implicit EULER method, also referred to as backward EULER

method. As already highlighted in Sect. 4.2, it may be necessary to solve
Eq. (5.10) numerically for ynC1. (Some notes on the numeric solution of non-
linear equations can be found in Appendix B.)

(3) The central rectangular rule (3.13) approximates Eq. (5.8) by

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/!tC O.!t3/ ; (5.11)

and we rewrite this equation in the form:

ynC1 D yn!1 C 2f .yn; tn/!tCO.!t3/ : (5.12)

5.2 Simple Integrators 65

5.2 Simple Integrators

We start by reintroducing the methods already discussed in the previous chapter.
Again, we discretize the time coordinate t via the relation tn D t0 C n!t and
define fn ! f .tn/ accordingly. In the following we will refrain from noting the initial
condition explicitly for a more compact notation. We investigate Eq. (5.1) at some
particular time tn:

Pyn D f .yn; tn/ : (5.7)

Integrating both sides of (5.7) over the interval Œtn; tnC1" gives

ynC1 D yn C
Z tnC1

tn
dt0f Œy.t0/; t0" : (5.8)

Note that Eq. (5.8) is exact and it will be our starting point in the discussion of
several paths to a numeric solution of initial value problems. These solutions will
be based on an approximation of the integral on the right hand side of Eq. (5.8) with
the help of the methods already discussed in Chap. 3.

In the following we list four of the best known simple integration methods for
initial value problems:

(1) Applying the forward rectangular rule (3.9) to Eq. (5.8) yields

ynC1 D yn C f .yn; tn/!tC O.!t2/ ; (5.9)

which is the explicit EULER method we encountered already in Sect. 4.2. This
method is also referred to as the forward EULER method. In accordance to
the forward rectangular rule, the leading term of the error of this method is
proportional to !t2 as was pointed out in Sect. 3.2.

(2) We use the backward rectangular rule (3.10) in Eq. (5.8) and obtain

ynC1 D yn C f .ynC1; tnC1/!tCO.!t2/ ; (5.10)

which is the implicit EULER method, also referred to as backward EULER

method. As already highlighted in Sect. 4.2, it may be necessary to solve
Eq. (5.10) numerically for ynC1. (Some notes on the numeric solution of non-
linear equations can be found in Appendix B.)

(3) The central rectangular rule (3.13) approximates Eq. (5.8) by

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/!tC O.!t3/ ; (5.11)

and we rewrite this equation in the form:

ynC1 D yn!1 C 2f .yn; tn/!tCO.!t3/ : (5.12)

5.2 Simple Integrators 65

5.2 Simple Integrators

We start by reintroducing the methods already discussed in the previous chapter.
Again, we discretize the time coordinate t via the relation tn D t0 C n!t and
define fn ! f .tn/ accordingly. In the following we will refrain from noting the initial
condition explicitly for a more compact notation. We investigate Eq. (5.1) at some
particular time tn:

Pyn D f .yn; tn/ : (5.7)

Integrating both sides of (5.7) over the interval Œtn; tnC1" gives

ynC1 D yn C
Z tnC1

tn
dt0f Œy.t0/; t0" : (5.8)

Note that Eq. (5.8) is exact and it will be our starting point in the discussion of
several paths to a numeric solution of initial value problems. These solutions will
be based on an approximation of the integral on the right hand side of Eq. (5.8) with
the help of the methods already discussed in Chap. 3.

In the following we list four of the best known simple integration methods for
initial value problems:

(1) Applying the forward rectangular rule (3.9) to Eq. (5.8) yields

ynC1 D yn C f .yn; tn/!tC O.!t2/ ; (5.9)

which is the explicit EULER method we encountered already in Sect. 4.2. This
method is also referred to as the forward EULER method. In accordance to
the forward rectangular rule, the leading term of the error of this method is
proportional to !t2 as was pointed out in Sect. 3.2.

(2) We use the backward rectangular rule (3.10) in Eq. (5.8) and obtain

ynC1 D yn C f .ynC1; tnC1/!tCO.!t2/ ; (5.10)

which is the implicit EULER method, also referred to as backward EULER

method. As already highlighted in Sect. 4.2, it may be necessary to solve
Eq. (5.10) numerically for ynC1. (Some notes on the numeric solution of non-
linear equations can be found in Appendix B.)

(3) The central rectangular rule (3.13) approximates Eq. (5.8) by

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/!tC O.!t3/ ; (5.11)

and we rewrite this equation in the form:

ynC1 D yn!1 C 2f .yn; tn/!tCO.!t3/ : (5.12)

66 5 Ordinary Differential Equations: Initial Value Problems

This method is sometimes referred to as the leap-frog routine or STÖRMER-
VERLET method. We will come back to this point in Chap. 7. Note that the
approximation

ynC 1
2

! yn C ynC1
2

; (5.13)

in Eq. (5.11) gives the implicit midpoint rule as it was introduced in Sect. 4.2.
(4) Employing the trapezoidal rule (3.15) in an approximation to Eq. (5.8) yields

ynC1 D yn C
!t
2
Œ f .yn; tn/C f .ynC1; tnC1/"C O.!t3/ : (5.14)

This is an implicit method which has to be solved for ynC1. It is generally known
as the CRANK-NICOLSON method [2] or simply as trapezoidal method.

Methods (1), (2), and (4) are also known as one-step methods, since only function
values at times tn and tnC1 are used to propagate in time. In contrast, the leap-
frog method is already a multi-step method since three different times appear in
the expression. Basically, there are three different strategies to improve these rather
simple methods:

• TAYLOR series methods: Use more terms in the TAYLOR expansion of ynC1.
• Linear Multi-Step methods: Use data from previous time steps yk, k < n in order

to cancel terms in the truncation error.
• RUNGE-KUTTA method: Use intermediate points within one time step.

We will briefly discuss the first two alternatives and then turn our attention to the
RUNGE-KUTTA methods in the next section.

TAYLOR Series Methods

From Chap. 2 we are already familiar with the TAYLOR expansion (2.7) of the
function ynC1 around the point yn,

ynC1 D yn C!t Pyn C
!t2

2
Ryn CO.!t3/ : (5.15)

We insert Eq. (5.7) into Eq. (5.15) and obtain

ynC1 D yn C!t f .yn; tn/C
!t2

2
Ryn C O.!t3/ : (5.16)

…

A. Glatz: Computational Physics 8

Using the trapezoidal rule gives:

Crank-Nicolson or trapezoidal method (implicit)

• The leap-frog method is a multi-step method, since it involves
values at three different times to evolve the solution in time

• All others are single-step methods (need only tn and tn+1).

66 5 Ordinary Differential Equations: Initial Value Problems

This method is sometimes referred to as the leap-frog routine or STÖRMER-
VERLET method. We will come back to this point in Chap. 7. Note that the
approximation

ynC 1
2

! yn C ynC1
2

; (5.13)

in Eq. (5.11) gives the implicit midpoint rule as it was introduced in Sect. 4.2.
(4) Employing the trapezoidal rule (3.15) in an approximation to Eq. (5.8) yields

ynC1 D yn C
!t
2
Œ f .yn; tn/C f .ynC1; tnC1/"C O.!t3/ : (5.14)

This is an implicit method which has to be solved for ynC1. It is generally known
as the CRANK-NICOLSON method [2] or simply as trapezoidal method.

Methods (1), (2), and (4) are also known as one-step methods, since only function
values at times tn and tnC1 are used to propagate in time. In contrast, the leap-
frog method is already a multi-step method since three different times appear in
the expression. Basically, there are three different strategies to improve these rather
simple methods:

• TAYLOR series methods: Use more terms in the TAYLOR expansion of ynC1.
• Linear Multi-Step methods: Use data from previous time steps yk, k < n in order

to cancel terms in the truncation error.
• RUNGE-KUTTA method: Use intermediate points within one time step.

We will briefly discuss the first two alternatives and then turn our attention to the
RUNGE-KUTTA methods in the next section.

TAYLOR Series Methods

From Chap. 2 we are already familiar with the TAYLOR expansion (2.7) of the
function ynC1 around the point yn,

ynC1 D yn C!t Pyn C
!t2

2
Ryn CO.!t3/ : (5.15)

We insert Eq. (5.7) into Eq. (5.15) and obtain

ynC1 D yn C!t f .yn; tn/C
!t2

2
Ryn C O.!t3/ : (5.16)

Improvements of the simple methods

A. Glatz: Computational Physics 9

• Taylor series methods: Use more terms in the Taylor expansion
of yn+1.

• Linear Multi-Step methods: Use data from previous time steps
yk, k<n in order to cancel terms in the truncation error.

• Runge-Kutta method: Use intermediate points within one time
step.

Taylor series methods

A. Glatz: Computational Physics 10

Taylor series of yn+1 around yn:

which gives:

having still error ∆t2, but with

we get

with error ∆t3

66 5 Ordinary Differential Equations: Initial Value Problems

This method is sometimes referred to as the leap-frog routine or STÖRMER-
VERLET method. We will come back to this point in Chap. 7. Note that the
approximation

ynC 1
2

! yn C ynC1
2

; (5.13)

in Eq. (5.11) gives the implicit midpoint rule as it was introduced in Sect. 4.2.
(4) Employing the trapezoidal rule (3.15) in an approximation to Eq. (5.8) yields

ynC1 D yn C
!t
2
Œ f .yn; tn/C f .ynC1; tnC1/"C O.!t3/ : (5.14)

This is an implicit method which has to be solved for ynC1. It is generally known
as the CRANK-NICOLSON method [2] or simply as trapezoidal method.

Methods (1), (2), and (4) are also known as one-step methods, since only function
values at times tn and tnC1 are used to propagate in time. In contrast, the leap-
frog method is already a multi-step method since three different times appear in
the expression. Basically, there are three different strategies to improve these rather
simple methods:

• TAYLOR series methods: Use more terms in the TAYLOR expansion of ynC1.
• Linear Multi-Step methods: Use data from previous time steps yk, k < n in order

to cancel terms in the truncation error.
• RUNGE-KUTTA method: Use intermediate points within one time step.

We will briefly discuss the first two alternatives and then turn our attention to the
RUNGE-KUTTA methods in the next section.

TAYLOR Series Methods

From Chap. 2 we are already familiar with the TAYLOR expansion (2.7) of the
function ynC1 around the point yn,

ynC1 D yn C!t Pyn C
!t2

2
Ryn CO.!t3/ : (5.15)

We insert Eq. (5.7) into Eq. (5.15) and obtain

ynC1 D yn C!t f .yn; tn/C
!t2

2
Ryn C O.!t3/ : (5.16)

66 5 Ordinary Differential Equations: Initial Value Problems

This method is sometimes referred to as the leap-frog routine or STÖRMER-
VERLET method. We will come back to this point in Chap. 7. Note that the
approximation

ynC 1
2

! yn C ynC1
2

; (5.13)

in Eq. (5.11) gives the implicit midpoint rule as it was introduced in Sect. 4.2.
(4) Employing the trapezoidal rule (3.15) in an approximation to Eq. (5.8) yields

ynC1 D yn C
!t
2
Œ f .yn; tn/C f .ynC1; tnC1/"C O.!t3/ : (5.14)

This is an implicit method which has to be solved for ynC1. It is generally known
as the CRANK-NICOLSON method [2] or simply as trapezoidal method.

Methods (1), (2), and (4) are also known as one-step methods, since only function
values at times tn and tnC1 are used to propagate in time. In contrast, the leap-
frog method is already a multi-step method since three different times appear in
the expression. Basically, there are three different strategies to improve these rather
simple methods:

• TAYLOR series methods: Use more terms in the TAYLOR expansion of ynC1.
• Linear Multi-Step methods: Use data from previous time steps yk, k < n in order

to cancel terms in the truncation error.
• RUNGE-KUTTA method: Use intermediate points within one time step.

We will briefly discuss the first two alternatives and then turn our attention to the
RUNGE-KUTTA methods in the next section.

TAYLOR Series Methods

From Chap. 2 we are already familiar with the TAYLOR expansion (2.7) of the
function ynC1 around the point yn,

ynC1 D yn C!t Pyn C
!t2

2
Ryn CO.!t3/ : (5.15)

We insert Eq. (5.7) into Eq. (5.15) and obtain

ynC1 D yn C!t f .yn; tn/C
!t2

2
Ryn C O.!t3/ : (5.16)

5.2 Simple Integrators 67

So far nothing has been gained since the truncation error is still proportional to !t2.
However, calculating Ryn with the help of Eq. (5.7) gives

Ryn D
d
dt
f .yn; tn/ D Pf .yn; tn/C f 0.yn; tn/Pyn D Pf .yn; tn/C f 0.yn; tn/f .yn; tn/ ; (5.17)

and this results together with Eq. (5.16) in:

ynC1 D ynC!t f .yn; tn/C
!t2

2

!Pf .yn; tn/C f 0.yn; tn/f .yn; tn/
"
CO.!t3/ : (5.18)

This manipulation reduced the local truncation error to orders of !t3. The deriva-
tives of f .yn; tn/, f 0.yn; tn/ and Pf .yn; tn/ can be approximated with the help of the
methods discussed in Chap. 2, if an analytic differentiation is not feasible. The above
procedure can be repeated up to arbitrary order in the TAYLOR expansion (5.15).

Linear Multi-step Methods

A k-th order linear multi-step method is defined by the approximation

ynC1 D
kX

jD0
ajyn!j C!t

kC1X

jD0
bj f .ynC1!j; tnC1!j/ ; (5.19)

of Eq. (5.8). The coefficients aj and bj have to be determined in such a way that the
local truncation error is reduced. Two of the best known techniques are the so called
second order ADAMS-BASHFORD method

ynC1 D yn C
!t
2
Œ3f .yn; tn/! f .yn!1; tn!1/" ; (5.20)

and the second order rule (backward differentiation formula)

ynC1 D
1

3

#
4yn ! yn!1 C

!t
2
f .ynC1; tnC1/

$
: (5.21)

(For details please consult Refs. [3–5].)
We note in passing that the backward differentiation formula of arbitrary order

can easily be obtainedwith the help of the operator technique introduced in Sect. 2.4,
Eq. (2.27). One simply inserts the backward difference series (2.27) to arbitrary
order into the right hand side of the differential equation (5.7).

5.2 Simple Integrators 67

So far nothing has been gained since the truncation error is still proportional to !t2.
However, calculating Ryn with the help of Eq. (5.7) gives

Ryn D
d
dt
f .yn; tn/ D Pf .yn; tn/C f 0.yn; tn/Pyn D Pf .yn; tn/C f 0.yn; tn/f .yn; tn/ ; (5.17)

and this results together with Eq. (5.16) in:

ynC1 D ynC!t f .yn; tn/C
!t2

2

!Pf .yn; tn/C f 0.yn; tn/f .yn; tn/
"
CO.!t3/ : (5.18)

This manipulation reduced the local truncation error to orders of !t3. The deriva-
tives of f .yn; tn/, f 0.yn; tn/ and Pf .yn; tn/ can be approximated with the help of the
methods discussed in Chap. 2, if an analytic differentiation is not feasible. The above
procedure can be repeated up to arbitrary order in the TAYLOR expansion (5.15).

Linear Multi-step Methods

A k-th order linear multi-step method is defined by the approximation

ynC1 D
kX

jD0
ajyn!j C!t

kC1X

jD0
bj f .ynC1!j; tnC1!j/ ; (5.19)

of Eq. (5.8). The coefficients aj and bj have to be determined in such a way that the
local truncation error is reduced. Two of the best known techniques are the so called
second order ADAMS-BASHFORD method

ynC1 D yn C
!t
2
Œ3f .yn; tn/! f .yn!1; tn!1/" ; (5.20)

and the second order rule (backward differentiation formula)

ynC1 D
1

3

#
4yn ! yn!1 C

!t
2
f .ynC1; tnC1/

$
: (5.21)

(For details please consult Refs. [3–5].)
We note in passing that the backward differentiation formula of arbitrary order

can easily be obtainedwith the help of the operator technique introduced in Sect. 2.4,
Eq. (2.27). One simply inserts the backward difference series (2.27) to arbitrary
order into the right hand side of the differential equation (5.7).

𝑓′ ≡
𝑑𝑓(𝑦, 𝑡)
𝑑𝑦

Linear multi-step methods

A. Glatz: Computational Physics 11

A k-th order linear multi-step method is defined by the
approximation

coefficients aj and bj have to be determined in such a way that the
local truncation error is reduced
For example, the Adams-Bashford method

or the second order rule (backward differentiation formula)

• multi-step methods are often based on the interpolation of
previously computed values yk by Lagrange polynomials

5.2 Simple Integrators 67

So far nothing has been gained since the truncation error is still proportional to !t2.
However, calculating Ryn with the help of Eq. (5.7) gives

Ryn D
d
dt
f .yn; tn/ D Pf .yn; tn/C f 0.yn; tn/Pyn D Pf .yn; tn/C f 0.yn; tn/f .yn; tn/ ; (5.17)

and this results together with Eq. (5.16) in:

ynC1 D ynC!t f .yn; tn/C
!t2

2

!Pf .yn; tn/C f 0.yn; tn/f .yn; tn/
"
CO.!t3/ : (5.18)

This manipulation reduced the local truncation error to orders of !t3. The deriva-
tives of f .yn; tn/, f 0.yn; tn/ and Pf .yn; tn/ can be approximated with the help of the
methods discussed in Chap. 2, if an analytic differentiation is not feasible. The above
procedure can be repeated up to arbitrary order in the TAYLOR expansion (5.15).

Linear Multi-step Methods

A k-th order linear multi-step method is defined by the approximation

ynC1 D
kX

jD0
ajyn!j C!t

kC1X

jD0
bj f .ynC1!j; tnC1!j/ ; (5.19)

of Eq. (5.8). The coefficients aj and bj have to be determined in such a way that the
local truncation error is reduced. Two of the best known techniques are the so called
second order ADAMS-BASHFORD method

ynC1 D yn C
!t
2
Œ3f .yn; tn/! f .yn!1; tn!1/" ; (5.20)

and the second order rule (backward differentiation formula)

ynC1 D
1

3

#
4yn ! yn!1 C

!t
2
f .ynC1; tnC1/

$
: (5.21)

(For details please consult Refs. [3–5].)
We note in passing that the backward differentiation formula of arbitrary order

can easily be obtainedwith the help of the operator technique introduced in Sect. 2.4,
Eq. (2.27). One simply inserts the backward difference series (2.27) to arbitrary
order into the right hand side of the differential equation (5.7).

5.2 Simple Integrators 67

So far nothing has been gained since the truncation error is still proportional to !t2.
However, calculating Ryn with the help of Eq. (5.7) gives

Ryn D
d
dt
f .yn; tn/ D Pf .yn; tn/C f 0.yn; tn/Pyn D Pf .yn; tn/C f 0.yn; tn/f .yn; tn/ ; (5.17)

and this results together with Eq. (5.16) in:

ynC1 D ynC!t f .yn; tn/C
!t2

2

!Pf .yn; tn/C f 0.yn; tn/f .yn; tn/
"
CO.!t3/ : (5.18)

This manipulation reduced the local truncation error to orders of !t3. The deriva-
tives of f .yn; tn/, f 0.yn; tn/ and Pf .yn; tn/ can be approximated with the help of the
methods discussed in Chap. 2, if an analytic differentiation is not feasible. The above
procedure can be repeated up to arbitrary order in the TAYLOR expansion (5.15).

Linear Multi-step Methods

A k-th order linear multi-step method is defined by the approximation

ynC1 D
kX

jD0
ajyn!j C!t

kC1X

jD0
bj f .ynC1!j; tnC1!j/ ; (5.19)

of Eq. (5.8). The coefficients aj and bj have to be determined in such a way that the
local truncation error is reduced. Two of the best known techniques are the so called
second order ADAMS-BASHFORD method

ynC1 D yn C
!t
2
Œ3f .yn; tn/! f .yn!1; tn!1/" ; (5.20)

and the second order rule (backward differentiation formula)

ynC1 D
1

3

#
4yn ! yn!1 C

!t
2
f .ynC1; tnC1/

$
: (5.21)

(For details please consult Refs. [3–5].)
We note in passing that the backward differentiation formula of arbitrary order

can easily be obtainedwith the help of the operator technique introduced in Sect. 2.4,
Eq. (2.27). One simply inserts the backward difference series (2.27) to arbitrary
order into the right hand side of the differential equation (5.7).

5.2 Simple Integrators 67

So far nothing has been gained since the truncation error is still proportional to !t2.
However, calculating Ryn with the help of Eq. (5.7) gives

Ryn D
d
dt
f .yn; tn/ D Pf .yn; tn/C f 0.yn; tn/Pyn D Pf .yn; tn/C f 0.yn; tn/f .yn; tn/ ; (5.17)

and this results together with Eq. (5.16) in:

ynC1 D ynC!t f .yn; tn/C
!t2

2

!Pf .yn; tn/C f 0.yn; tn/f .yn; tn/
"
CO.!t3/ : (5.18)

This manipulation reduced the local truncation error to orders of !t3. The deriva-
tives of f .yn; tn/, f 0.yn; tn/ and Pf .yn; tn/ can be approximated with the help of the
methods discussed in Chap. 2, if an analytic differentiation is not feasible. The above
procedure can be repeated up to arbitrary order in the TAYLOR expansion (5.15).

Linear Multi-step Methods

A k-th order linear multi-step method is defined by the approximation

ynC1 D
kX

jD0
ajyn!j C!t

kC1X

jD0
bj f .ynC1!j; tnC1!j/ ; (5.19)

of Eq. (5.8). The coefficients aj and bj have to be determined in such a way that the
local truncation error is reduced. Two of the best known techniques are the so called
second order ADAMS-BASHFORD method

ynC1 D yn C
!t
2
Œ3f .yn; tn/! f .yn!1; tn!1/" ; (5.20)

and the second order rule (backward differentiation formula)

ynC1 D
1

3

#
4yn ! yn!1 C

!t
2
f .ynC1; tnC1/

$
: (5.21)

(For details please consult Refs. [3–5].)
We note in passing that the backward differentiation formula of arbitrary order

can easily be obtainedwith the help of the operator technique introduced in Sect. 2.4,
Eq. (2.27). One simply inserts the backward difference series (2.27) to arbitrary
order into the right hand side of the differential equation (5.7).

…

A. Glatz: Computational Physics 12

Note

is explicit for b0=0 and implicit for b0≠0.
In many numerical realizations one combines implicit and explicit
multi-step methods in such a way that the explicit result with
b0=0 is used as a guess to solve the implicit equation with b0≠0.
à the explicit method predicts the value yn+1 and the implicit

method corrects it.
Such methods yield very good results and are commonly referred
to as predictor–corrector methods.

5.2 Simple Integrators 67

So far nothing has been gained since the truncation error is still proportional to !t2.
However, calculating Ryn with the help of Eq. (5.7) gives

Ryn D
d
dt
f .yn; tn/ D Pf .yn; tn/C f 0.yn; tn/Pyn D Pf .yn; tn/C f 0.yn; tn/f .yn; tn/ ; (5.17)

and this results together with Eq. (5.16) in:

ynC1 D ynC!t f .yn; tn/C
!t2

2

!Pf .yn; tn/C f 0.yn; tn/f .yn; tn/
"
CO.!t3/ : (5.18)

This manipulation reduced the local truncation error to orders of !t3. The deriva-
tives of f .yn; tn/, f 0.yn; tn/ and Pf .yn; tn/ can be approximated with the help of the
methods discussed in Chap. 2, if an analytic differentiation is not feasible. The above
procedure can be repeated up to arbitrary order in the TAYLOR expansion (5.15).

Linear Multi-step Methods

A k-th order linear multi-step method is defined by the approximation

ynC1 D
kX

jD0
ajyn!j C!t

kC1X

jD0
bj f .ynC1!j; tnC1!j/ ; (5.19)

of Eq. (5.8). The coefficients aj and bj have to be determined in such a way that the
local truncation error is reduced. Two of the best known techniques are the so called
second order ADAMS-BASHFORD method

ynC1 D yn C
!t
2
Œ3f .yn; tn/! f .yn!1; tn!1/" ; (5.20)

and the second order rule (backward differentiation formula)

ynC1 D
1

3

#
4yn ! yn!1 C

!t
2
f .ynC1; tnC1/

$
: (5.21)

(For details please consult Refs. [3–5].)
We note in passing that the backward differentiation formula of arbitrary order

can easily be obtainedwith the help of the operator technique introduced in Sect. 2.4,
Eq. (2.27). One simply inserts the backward difference series (2.27) to arbitrary
order into the right hand side of the differential equation (5.7).

Runge-Kutta methods

A. Glatz: Computational Physics 13

• In contrast to multi-step methods, Runge-Kutta methods
improve the accuracy by calculating intermediate grid-points
within the interval [tn, tn+1].

• Note, the central rectangular rule approximation results in such
a method, since the function value yn+1/2 at the grid-point
tn+1/2=tn+∆t/2 is used:

• Next, find approximations for yn+1/2. Using explicit Euler gives:

• resulting in:

68 5 Ordinary Differential Equations: Initial Value Problems

In many cases, multi-step methods are based on the interpolation of previously
computed values yk by LAGRANGE polynomials. This interpolation is then inserted
into Eq. (5.8) and integrated. However, a detailed discussion of such procedures is
beyond the scope of this book. The interested reader is referred to Refs. [6, 7].

Nevertheless, let us make one last point. We note that Eq. (5.19) is explicit for
b0 D 0 and implicit for b0 ¤ 0. In many numerical realizations one combines
implicit and explicit multi-step methods in such a way that the explicit result [solve
Eq. (5.19) with b0 D 0] is used as a guess to solve the implicit equation [solve
Eq. (5.19) with b0 ¤ 0]. Hence, the explicit method predicts the value ynC1 and the
implicit method corrects it. Such methods yield very good results and are commonly
referred to as predictor–correctormethods [8].

5.3 RUNGE-KUTTA Methods

In contrast to linear multi-step methods, the idea in RUNGE-KUTTA methods (see,
for instance, Ref. [6]) is to improve the accuracy by calculating intermediate grid-
points within the interval Œtn; tnC1!. We note that the approximation (5.11) resulting
from the central rectangular rule is already such a method since the function value
ynC1=2 at the grid-point tnC1=2 D tnC"t=2 is taken into account. We investigate this
in more detail and rewrite Eq. (5.11):

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/"tC O."t3/ : (5.22)

We now have to find appropriate approximations to ynC1=2 which will increase
the accuracy of Eq. (5.11). Our first choice is to replace ynC1=2 with the help of the
explicit EULER method, Eq. (5.9),

ynC 1
2
D yn C

"t
2
Pyn D yn C

"t
2
f .yn; tn/ ; (5.23)

which, inserted into Eq. (5.22) yields

ynC1 D yn C f
!
yn C

"t
2
f .yn; tn/; tn C

"t
2

"
"tC O."t2/ : (5.24)

We note that Eq. (5.24) is referred to as the explicit midpoint rule. In analogy
we could have approximated ynC1=2 with the help of the averaged function value
#ynC1=2 which results in

ynC1 D yn C f
#
yn C ynC1

2
; tn C

"t
2

$
"tC O."t2/ : (5.25)

68 5 Ordinary Differential Equations: Initial Value Problems

In many cases, multi-step methods are based on the interpolation of previously
computed values yk by LAGRANGE polynomials. This interpolation is then inserted
into Eq. (5.8) and integrated. However, a detailed discussion of such procedures is
beyond the scope of this book. The interested reader is referred to Refs. [6, 7].

Nevertheless, let us make one last point. We note that Eq. (5.19) is explicit for
b0 D 0 and implicit for b0 ¤ 0. In many numerical realizations one combines
implicit and explicit multi-step methods in such a way that the explicit result [solve
Eq. (5.19) with b0 D 0] is used as a guess to solve the implicit equation [solve
Eq. (5.19) with b0 ¤ 0]. Hence, the explicit method predicts the value ynC1 and the
implicit method corrects it. Such methods yield very good results and are commonly
referred to as predictor–correctormethods [8].

5.3 RUNGE-KUTTA Methods

In contrast to linear multi-step methods, the idea in RUNGE-KUTTA methods (see,
for instance, Ref. [6]) is to improve the accuracy by calculating intermediate grid-
points within the interval Œtn; tnC1!. We note that the approximation (5.11) resulting
from the central rectangular rule is already such a method since the function value
ynC1=2 at the grid-point tnC1=2 D tnC"t=2 is taken into account. We investigate this
in more detail and rewrite Eq. (5.11):

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/"tC O."t3/ : (5.22)

We now have to find appropriate approximations to ynC1=2 which will increase
the accuracy of Eq. (5.11). Our first choice is to replace ynC1=2 with the help of the
explicit EULER method, Eq. (5.9),

ynC 1
2
D yn C

"t
2
Pyn D yn C

"t
2
f .yn; tn/ ; (5.23)

which, inserted into Eq. (5.22) yields

ynC1 D yn C f
!
yn C

"t
2
f .yn; tn/; tn C

"t
2

"
"tC O."t2/ : (5.24)

We note that Eq. (5.24) is referred to as the explicit midpoint rule. In analogy
we could have approximated ynC1=2 with the help of the averaged function value
#ynC1=2 which results in

ynC1 D yn C f
#
yn C ynC1

2
; tn C

"t
2

$
"tC O."t2/ : (5.25)

68 5 Ordinary Differential Equations: Initial Value Problems

In many cases, multi-step methods are based on the interpolation of previously
computed values yk by LAGRANGE polynomials. This interpolation is then inserted
into Eq. (5.8) and integrated. However, a detailed discussion of such procedures is
beyond the scope of this book. The interested reader is referred to Refs. [6, 7].

Nevertheless, let us make one last point. We note that Eq. (5.19) is explicit for
b0 D 0 and implicit for b0 ¤ 0. In many numerical realizations one combines
implicit and explicit multi-step methods in such a way that the explicit result [solve
Eq. (5.19) with b0 D 0] is used as a guess to solve the implicit equation [solve
Eq. (5.19) with b0 ¤ 0]. Hence, the explicit method predicts the value ynC1 and the
implicit method corrects it. Such methods yield very good results and are commonly
referred to as predictor–correctormethods [8].

5.3 RUNGE-KUTTA Methods

In contrast to linear multi-step methods, the idea in RUNGE-KUTTA methods (see,
for instance, Ref. [6]) is to improve the accuracy by calculating intermediate grid-
points within the interval Œtn; tnC1!. We note that the approximation (5.11) resulting
from the central rectangular rule is already such a method since the function value
ynC1=2 at the grid-point tnC1=2 D tnC"t=2 is taken into account. We investigate this
in more detail and rewrite Eq. (5.11):

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/"tC O."t3/ : (5.22)

We now have to find appropriate approximations to ynC1=2 which will increase
the accuracy of Eq. (5.11). Our first choice is to replace ynC1=2 with the help of the
explicit EULER method, Eq. (5.9),

ynC 1
2
D yn C

"t
2
Pyn D yn C

"t
2
f .yn; tn/ ; (5.23)

which, inserted into Eq. (5.22) yields

ynC1 D yn C f
!
yn C

"t
2
f .yn; tn/; tn C

"t
2

"
"tC O."t2/ : (5.24)

We note that Eq. (5.24) is referred to as the explicit midpoint rule. In analogy
we could have approximated ynC1=2 with the help of the averaged function value
#ynC1=2 which results in

ynC1 D yn C f
#
yn C ynC1

2
; tn C

"t
2

$
"tC O."t2/ : (5.25)

explicit midpoint rule

…

A. Glatz: Computational Physics 14

Using instead the average approximation, results in the
implicit midpoint rule

both have error 𝒪(∆t2)

68 5 Ordinary Differential Equations: Initial Value Problems

In many cases, multi-step methods are based on the interpolation of previously
computed values yk by LAGRANGE polynomials. This interpolation is then inserted
into Eq. (5.8) and integrated. However, a detailed discussion of such procedures is
beyond the scope of this book. The interested reader is referred to Refs. [6, 7].

Nevertheless, let us make one last point. We note that Eq. (5.19) is explicit for
b0 D 0 and implicit for b0 ¤ 0. In many numerical realizations one combines
implicit and explicit multi-step methods in such a way that the explicit result [solve
Eq. (5.19) with b0 D 0] is used as a guess to solve the implicit equation [solve
Eq. (5.19) with b0 ¤ 0]. Hence, the explicit method predicts the value ynC1 and the
implicit method corrects it. Such methods yield very good results and are commonly
referred to as predictor–correctormethods [8].

5.3 RUNGE-KUTTA Methods

In contrast to linear multi-step methods, the idea in RUNGE-KUTTA methods (see,
for instance, Ref. [6]) is to improve the accuracy by calculating intermediate grid-
points within the interval Œtn; tnC1!. We note that the approximation (5.11) resulting
from the central rectangular rule is already such a method since the function value
ynC1=2 at the grid-point tnC1=2 D tnC"t=2 is taken into account. We investigate this
in more detail and rewrite Eq. (5.11):

ynC1 D yn C f .ynC 1
2
; tnC 1

2
/"tC O."t3/ : (5.22)

We now have to find appropriate approximations to ynC1=2 which will increase
the accuracy of Eq. (5.11). Our first choice is to replace ynC1=2 with the help of the
explicit EULER method, Eq. (5.9),

ynC 1
2
D yn C

"t
2
Pyn D yn C

"t
2
f .yn; tn/ ; (5.23)

which, inserted into Eq. (5.22) yields

ynC1 D yn C f
!
yn C

"t
2
f .yn; tn/; tn C

"t
2

"
"tC O."t2/ : (5.24)

We note that Eq. (5.24) is referred to as the explicit midpoint rule. In analogy
we could have approximated ynC1=2 with the help of the averaged function value
#ynC1=2 which results in

ynC1 D yn C f
#
yn C ynC1

2
; tn C

"t
2

$
"tC O."t2/ : (5.25)

Algorithmic form

A. Glatz: Computational Physics 15

Introduce variables Yi
àExplicit Euler:

à Implicit Euler:

àCrank-Nicolson:

5.3 RUNGE-KUTTA Methods 69

This equation is referred to as the implicit midpoint rule. Let us explain how we
obtain an estimate for the error in Eqs. (5.24) and (5.25). In case of Eq. (5.24) we
investigate the term

ynC1 ! yn ! f
!
yn C

!t
2
f .yn; tn/; tn C

!t
2

"
!t :

The TAYLOR expansion of ynC1 and f ."/ around the point!t D 0 yields

!t ŒPyn ! f .yn; tn/"C
!t2

2

#
Ry ! Pf .yn; tn/ ! f 0.yn; tn/Pyn

$
C : : : : (5.26)

We observe that the first term cancels because of Eq. (5.7). Consequently, the error
is of order!t2. A similar argument holds for Eq. (5.25).

Let us introduce a more convenient notation for the above examples before we
concentrate on a more general topic. It is presented in algorithmic form, i.e. it defines
the sequence in which one should calculate the various terms. This is convenient for
two reasons, first of all it increases the readability of complex methods such as
Eq. (5.25) and, secondly, it is easy to identify which part of the method involves
an implicit step and which part has to be solved separately for the corresponding
variable. For this purpose let us introduce variables Yi of some index i # 1 and
we use a simple example to illustrate this notation. Consider the explicit EULER

method (5.9). It can be written as

Y1 D yn ;

ynC1 D yn C f .Y1; tn/!t : (5.27)

In a similar fashion we write the implicit EULER method (5.10) as

Y1 D yn C f .Y1; tnC1/!t ;

ynC1 D yn C f .Y1; tnC1/!t : (5.28)

It is understood that the first equation of (5.28) has to be solved for Y1 first and this
result is then plugged into the second equation in order to obtain ynC1. One further
example: the CRANK-NICOLSON (5.14) method can be rewritten as

Y1 D yn ;

Y2 D yn C
!t
2
Œ f .Y1; tn/C f .Y2; tnC1/" ;

ynC1 D yn C
!t
2
Œ f .Y1; tn/C f .Y2; tnC1/" ; (5.29)

where the second equation is to be solved for Y2 in the second step.

5.3 RUNGE-KUTTA Methods 69

This equation is referred to as the implicit midpoint rule. Let us explain how we
obtain an estimate for the error in Eqs. (5.24) and (5.25). In case of Eq. (5.24) we
investigate the term

ynC1 ! yn ! f
!
yn C

!t
2
f .yn; tn/; tn C

!t
2

"
!t :

The TAYLOR expansion of ynC1 and f ."/ around the point!t D 0 yields

!t ŒPyn ! f .yn; tn/"C
!t2

2

#
Ry ! Pf .yn; tn/ ! f 0.yn; tn/Pyn

$
C : : : : (5.26)

We observe that the first term cancels because of Eq. (5.7). Consequently, the error
is of order!t2. A similar argument holds for Eq. (5.25).

Let us introduce a more convenient notation for the above examples before we
concentrate on a more general topic. It is presented in algorithmic form, i.e. it defines
the sequence in which one should calculate the various terms. This is convenient for
two reasons, first of all it increases the readability of complex methods such as
Eq. (5.25) and, secondly, it is easy to identify which part of the method involves
an implicit step and which part has to be solved separately for the corresponding
variable. For this purpose let us introduce variables Yi of some index i # 1 and
we use a simple example to illustrate this notation. Consider the explicit EULER

method (5.9). It can be written as

Y1 D yn ;

ynC1 D yn C f .Y1; tn/!t : (5.27)

In a similar fashion we write the implicit EULER method (5.10) as

Y1 D yn C f .Y1; tnC1/!t ;

ynC1 D yn C f .Y1; tnC1/!t : (5.28)

It is understood that the first equation of (5.28) has to be solved for Y1 first and this
result is then plugged into the second equation in order to obtain ynC1. One further
example: the CRANK-NICOLSON (5.14) method can be rewritten as

Y1 D yn ;

Y2 D yn C
!t
2
Œ f .Y1; tn/C f .Y2; tnC1/" ;

ynC1 D yn C
!t
2
Œ f .Y1; tn/C f .Y2; tnC1/" ; (5.29)

where the second equation is to be solved for Y2 in the second step.

solve for Y1

5.3 RUNGE-KUTTA Methods 69

This equation is referred to as the implicit midpoint rule. Let us explain how we
obtain an estimate for the error in Eqs. (5.24) and (5.25). In case of Eq. (5.24) we
investigate the term

ynC1 ! yn ! f
!
yn C

!t
2
f .yn; tn/; tn C

!t
2

"
!t :

The TAYLOR expansion of ynC1 and f ."/ around the point!t D 0 yields

!t ŒPyn ! f .yn; tn/"C
!t2

2

#
Ry ! Pf .yn; tn/ ! f 0.yn; tn/Pyn

$
C : : : : (5.26)

We observe that the first term cancels because of Eq. (5.7). Consequently, the error
is of order!t2. A similar argument holds for Eq. (5.25).

Let us introduce a more convenient notation for the above examples before we
concentrate on a more general topic. It is presented in algorithmic form, i.e. it defines
the sequence in which one should calculate the various terms. This is convenient for
two reasons, first of all it increases the readability of complex methods such as
Eq. (5.25) and, secondly, it is easy to identify which part of the method involves
an implicit step and which part has to be solved separately for the corresponding
variable. For this purpose let us introduce variables Yi of some index i # 1 and
we use a simple example to illustrate this notation. Consider the explicit EULER

method (5.9). It can be written as

Y1 D yn ;

ynC1 D yn C f .Y1; tn/!t : (5.27)

In a similar fashion we write the implicit EULER method (5.10) as

Y1 D yn C f .Y1; tnC1/!t ;

ynC1 D yn C f .Y1; tnC1/!t : (5.28)

It is understood that the first equation of (5.28) has to be solved for Y1 first and this
result is then plugged into the second equation in order to obtain ynC1. One further
example: the CRANK-NICOLSON (5.14) method can be rewritten as

Y1 D yn ;

Y2 D yn C
!t
2
Œ f .Y1; tn/C f .Y2; tnC1/" ;

ynC1 D yn C
!t
2
Œ f .Y1; tn/C f .Y2; tnC1/" ; (5.29)

where the second equation is to be solved for Y2 in the second step.

solve for Y2

…

A. Glatz: Computational Physics 16

• explicit midpoint rule

• implicit midpoint rule

70 5 Ordinary Differential Equations: Initial Value Problems

In analogy, the algorithmic form of the explicit midpoint rule (5.24) is defined as

Y1 D yn ;

Y2 D yn C
!t
2
f
!
Y1; tn C

!t
2

"
;

ynC1 D yn C
!t
2
f
!
Y2; tn C

!t
2

"
; (5.30)

and we find for the implicit midpoint rule (5.25):

Y1 D yn C
!t
2
f
!
Y1; tn C

!t
2

"
;

ynC1 D yn C!t f
!
Y1; tn C

!t
2

"
: (5.31)

The above algorithms are all examples of the so called RUNGE-KUTTA methods.
We introduce the general representation of a d-stage RUNGE-KUTTA method:

Yi D yn C!t
dX

jD1
aij f

#
Yj; tn C cj!t

$
; i D 1; : : : ; d ;

ynC1 D yn C!t
dX

jD1
bj f

#
Yj; tn C cj!t

$
: (5.32)

We note that Eq. (5.32) it is completely determined by the coefficients aij, bj and
cj. In particular a D faijg is a d ! d matrix, while b D fbjg and c D fcjg are d
dimensional vectors.

BUTCHER tableaus are a very useful tool to characterize such methods. They
provide a structured representation of the coefficient matrix a and the coefficient
vectors b and c:

c1 a11 a12 : : : a1d
c2 a21 a22 : : : a2d
:::

:::
:::
: : :

:::

cd ad1 ad2 : : : add
b1 b2 : : : bd

(5.33)

70 5 Ordinary Differential Equations: Initial Value Problems

In analogy, the algorithmic form of the explicit midpoint rule (5.24) is defined as

Y1 D yn ;

Y2 D yn C
!t
2
f
!
Y1; tn C

!t
2

"
;

ynC1 D yn C
!t
2
f
!
Y2; tn C

!t
2

"
; (5.30)

and we find for the implicit midpoint rule (5.25):

Y1 D yn C
!t
2
f
!
Y1; tn C

!t
2

"
;

ynC1 D yn C!t f
!
Y1; tn C

!t
2

"
: (5.31)

The above algorithms are all examples of the so called RUNGE-KUTTA methods.
We introduce the general representation of a d-stage RUNGE-KUTTA method:

Yi D yn C!t
dX

jD1
aij f

#
Yj; tn C cj!t

$
; i D 1; : : : ; d ;

ynC1 D yn C!t
dX

jD1
bj f

#
Yj; tn C cj!t

$
: (5.32)

We note that Eq. (5.32) it is completely determined by the coefficients aij, bj and
cj. In particular a D faijg is a d ! d matrix, while b D fbjg and c D fcjg are d
dimensional vectors.

BUTCHER tableaus are a very useful tool to characterize such methods. They
provide a structured representation of the coefficient matrix a and the coefficient
vectors b and c:

c1 a11 a12 : : : a1d
c2 a21 a22 : : : a2d
:::

:::
:::
: : :

:::

cd ad1 ad2 : : : add
b1 b2 : : : bd

(5.33)

These are examples of Kunge-Kutta methods

general d-stage Runge-Kutta (RK)
method

A. Glatz: Computational Physics 17

70 5 Ordinary Differential Equations: Initial Value Problems

In analogy, the algorithmic form of the explicit midpoint rule (5.24) is defined as

Y1 D yn ;

Y2 D yn C
!t
2
f
!
Y1; tn C

!t
2

"
;

ynC1 D yn C
!t
2
f
!
Y2; tn C

!t
2

"
; (5.30)

and we find for the implicit midpoint rule (5.25):

Y1 D yn C
!t
2
f
!
Y1; tn C

!t
2

"
;

ynC1 D yn C!t f
!
Y1; tn C

!t
2

"
: (5.31)

The above algorithms are all examples of the so called RUNGE-KUTTA methods.
We introduce the general representation of a d-stage RUNGE-KUTTA method:

Yi D yn C!t
dX

jD1
aij f

#
Yj; tn C cj!t

$
; i D 1; : : : ; d ;

ynC1 D yn C!t
dX

jD1
bj f

#
Yj; tn C cj!t

$
: (5.32)

We note that Eq. (5.32) it is completely determined by the coefficients aij, bj and
cj. In particular a D faijg is a d ! d matrix, while b D fbjg and c D fcjg are d
dimensional vectors.

BUTCHER tableaus are a very useful tool to characterize such methods. They
provide a structured representation of the coefficient matrix a and the coefficient
vectors b and c:

c1 a11 a12 : : : a1d
c2 a21 a22 : : : a2d
:::

:::
:::
: : :

:::

cd ad1 ad2 : : : add
b1 b2 : : : bd

(5.33)

Fully determined by coefficients aij, bj, cj,
where A={aij} is a dxd matrix, b={bj} and c={cj} d-dimensional
vectors.
Useful way to describe RK
methods by Butcher tableaus:

70 5 Ordinary Differential Equations: Initial Value Problems

In analogy, the algorithmic form of the explicit midpoint rule (5.24) is defined as

Y1 D yn ;

Y2 D yn C
!t
2
f
!
Y1; tn C

!t
2

"
;

ynC1 D yn C
!t
2
f
!
Y2; tn C

!t
2

"
; (5.30)

and we find for the implicit midpoint rule (5.25):

Y1 D yn C
!t
2
f
!
Y1; tn C

!t
2

"
;

ynC1 D yn C!t f
!
Y1; tn C

!t
2

"
: (5.31)

The above algorithms are all examples of the so called RUNGE-KUTTA methods.
We introduce the general representation of a d-stage RUNGE-KUTTA method:

Yi D yn C!t
dX

jD1
aij f

#
Yj; tn C cj!t

$
; i D 1; : : : ; d ;

ynC1 D yn C!t
dX

jD1
bj f

#
Yj; tn C cj!t

$
: (5.32)

We note that Eq. (5.32) it is completely determined by the coefficients aij, bj and
cj. In particular a D faijg is a d ! d matrix, while b D fbjg and c D fcjg are d
dimensional vectors.

BUTCHER tableaus are a very useful tool to characterize such methods. They
provide a structured representation of the coefficient matrix a and the coefficient
vectors b and c:

c1 a11 a12 : : : a1d
c2 a21 a22 : : : a2d
:::

:::
:::
: : :

:::

cd ad1 ad2 : : : add
b1 b2 : : : bd

(5.33)

Butcher tableaus

A. Glatz: Computational Physics 18

explicit methods methods have zeros on and above the diagonal of A

Implicit Euler

5.3 RUNGE-KUTTA Methods 71

We note that the RUNGE-KUTTA method (5.32) or (5.33) is explicit if the matrix a is
zero on and above the diagonal, i.e. aij D 0 for j ! i. Let us rewrite all the methods
described here in the form of BUTCHER tableaus:

Explicit EULER:

0 0

1
(5.34)

Implicit EULER:

1 1

1
(5.35)

CRANK-NICOLSON:

0 0 0

1 1
2
1
2

1
2
1
2

(5.36)

Explicit Midpoint:

0 0 0
1
2
1
2
0

1
2
1
2

(5.37)

Implicit Midpoint:

1
2
1
2

1
(5.38)

5.3 RUNGE-KUTTA Methods 71

We note that the RUNGE-KUTTA method (5.32) or (5.33) is explicit if the matrix a is
zero on and above the diagonal, i.e. aij D 0 for j ! i. Let us rewrite all the methods
described here in the form of BUTCHER tableaus:

Explicit EULER:

0 0

1
(5.34)

Implicit EULER:

1 1

1
(5.35)

CRANK-NICOLSON:

0 0 0

1 1
2
1
2

1
2
1
2

(5.36)

Explicit Midpoint:

0 0 0
1
2
1
2
0

1
2
1
2

(5.37)

Implicit Midpoint:

1
2
1
2

1
(5.38)

Explicit Euler

5.3 RUNGE-KUTTA Methods 71

We note that the RUNGE-KUTTA method (5.32) or (5.33) is explicit if the matrix a is
zero on and above the diagonal, i.e. aij D 0 for j ! i. Let us rewrite all the methods
described here in the form of BUTCHER tableaus:

Explicit EULER:

0 0

1
(5.34)

Implicit EULER:

1 1

1
(5.35)

CRANK-NICOLSON:

0 0 0

1 1
2
1
2

1
2
1
2

(5.36)

Explicit Midpoint:

0 0 0
1
2
1
2
0

1
2
1
2

(5.37)

Implicit Midpoint:

1
2
1
2

1
(5.38)

Crank-Nicolson

5.3 RUNGE-KUTTA Methods 71

We note that the RUNGE-KUTTA method (5.32) or (5.33) is explicit if the matrix a is
zero on and above the diagonal, i.e. aij D 0 for j ! i. Let us rewrite all the methods
described here in the form of BUTCHER tableaus:

Explicit EULER:

0 0

1
(5.34)

Implicit EULER:

1 1

1
(5.35)

CRANK-NICOLSON:

0 0 0

1 1
2
1
2

1
2
1
2

(5.36)

Explicit Midpoint:

0 0 0
1
2
1
2
0

1
2
1
2

(5.37)

Implicit Midpoint:

1
2
1
2

1
(5.38)

5.3 RUNGE-KUTTA Methods 71

We note that the RUNGE-KUTTA method (5.32) or (5.33) is explicit if the matrix a is
zero on and above the diagonal, i.e. aij D 0 for j ! i. Let us rewrite all the methods
described here in the form of BUTCHER tableaus:

Explicit EULER:

0 0

1
(5.34)

Implicit EULER:

1 1

1
(5.35)

CRANK-NICOLSON:

0 0 0

1 1
2
1
2

1
2
1
2

(5.36)

Explicit Midpoint:

0 0 0
1
2
1
2
0

1
2
1
2

(5.37)

Implicit Midpoint:

1
2
1
2

1
(5.38)

Implicit MidpointExplicit Midpoint

RK4 method

A. Glatz: Computational Physics 19

Using the general RK scheme one can develop arbitrarily precise methods
Most famous:
• four stage RK:

RK4 or e-RK-4
• explicit

72 5 Ordinary Differential Equations: Initial Value Problems

With the help of RUNGE-KUTTA methods of the general form (5.32) one can
develop methods of arbitrary accuracy. One of the most popular methods is the
explicit four stage method (we will call it e-RK-4) which is defined by the algorithm:

Y1 D yn;

Y2 D yn C
!t
2
f .Y1; tn/ ;

Y3 D yn C
!t
2
f
!
Y2; tn C

!t
2

"
;

Y4 D yn C!t f
!
Y3; tn C

!t
2

"
;

ynC1 D yn C
!t
6

#
f .Y1; tn/C 2f

!
Y2; tn C

!t
2

"

C2f
!
Y3; tn C

!t
2

"
C f .Y4; tn/

$
: (5.39)

This method is an analogue to the SIMPSON rule of numerical integration as
discussed in Sect. 3.4. However, a detailed compilation of the coefficient array a
and coefficient vectors b, and c is quite complicated. A closer inspection reveals
that the methodological error of this method behaves as!t5. The algorithm e-RK-4,
Eq. (5.39), is represented by a BUTCHER tableau of the form

0 0 0 0 0
1
2
1
2
0 0 0

1
2
0 1
2
0 0

1 0 0 1 0
1
6
1
3
1
3
1
6

(5.40)

Another quite popular method is given by the BUTCHER tableau

1
2

!
p
3
6

1
4

1
4

!
p
3
6

1
2
C

p
3
6

1
4
C

p
3
6

1
4

1
2

1
2

(5.41)

We note that this method is implicit and mention that it corresponds to the two point
GAUSS-LEGENDRE quadrature of Sect. 3.6.

A further improvement of implicit RUNGE-KUTTA methods can be achieved by
choosing the Yi in such a way that they correspond to solutions of the differential
equation (5.7) at intermediate time steps. The intermediate time steps at which
one wants to reproduce the function are referred to as collocation points. At these
points the functions are approximated by interpolation on the basis of LAGRANGE

72 5 Ordinary Differential Equations: Initial Value Problems

With the help of RUNGE-KUTTA methods of the general form (5.32) one can
develop methods of arbitrary accuracy. One of the most popular methods is the
explicit four stage method (we will call it e-RK-4) which is defined by the algorithm:

Y1 D yn;

Y2 D yn C
!t
2
f .Y1; tn/ ;

Y3 D yn C
!t
2
f
!
Y2; tn C

!t
2

"
;

Y4 D yn C!t f
!
Y3; tn C

!t
2

"
;

ynC1 D yn C
!t
6

#
f .Y1; tn/C 2f

!
Y2; tn C

!t
2

"

C2f
!
Y3; tn C

!t
2

"
C f .Y4; tn/

$
: (5.39)

This method is an analogue to the SIMPSON rule of numerical integration as
discussed in Sect. 3.4. However, a detailed compilation of the coefficient array a
and coefficient vectors b, and c is quite complicated. A closer inspection reveals
that the methodological error of this method behaves as!t5. The algorithm e-RK-4,
Eq. (5.39), is represented by a BUTCHER tableau of the form

0 0 0 0 0
1
2
1
2
0 0 0

1
2
0 1
2
0 0

1 0 0 1 0
1
6
1
3
1
3
1
6

(5.40)

Another quite popular method is given by the BUTCHER tableau

1
2

!
p
3
6

1
4

1
4

!
p
3
6

1
2
C

p
3
6

1
4
C

p
3
6

1
4

1
2

1
2

(5.41)

We note that this method is implicit and mention that it corresponds to the two point
GAUSS-LEGENDRE quadrature of Sect. 3.6.

A further improvement of implicit RUNGE-KUTTA methods can be achieved by
choosing the Yi in such a way that they correspond to solutions of the differential
equation (5.7) at intermediate time steps. The intermediate time steps at which
one wants to reproduce the function are referred to as collocation points. At these
points the functions are approximated by interpolation on the basis of LAGRANGE

is analog to Simpson rule for integration

…

A. Glatz: Computational Physics 20

Another popular method is defined by

is related to Gauss-Legendre 2-point method.

72 5 Ordinary Differential Equations: Initial Value Problems

With the help of RUNGE-KUTTA methods of the general form (5.32) one can
develop methods of arbitrary accuracy. One of the most popular methods is the
explicit four stage method (we will call it e-RK-4) which is defined by the algorithm:

Y1 D yn;

Y2 D yn C
!t
2
f .Y1; tn/ ;

Y3 D yn C
!t
2
f
!
Y2; tn C

!t
2

"
;

Y4 D yn C!t f
!
Y3; tn C

!t
2

"
;

ynC1 D yn C
!t
6

#
f .Y1; tn/C 2f

!
Y2; tn C

!t
2

"

C2f
!
Y3; tn C

!t
2

"
C f .Y4; tn/

$
: (5.39)

This method is an analogue to the SIMPSON rule of numerical integration as
discussed in Sect. 3.4. However, a detailed compilation of the coefficient array a
and coefficient vectors b, and c is quite complicated. A closer inspection reveals
that the methodological error of this method behaves as!t5. The algorithm e-RK-4,
Eq. (5.39), is represented by a BUTCHER tableau of the form

0 0 0 0 0
1
2
1
2
0 0 0

1
2
0 1
2
0 0

1 0 0 1 0
1
6
1
3
1
3
1
6

(5.40)

Another quite popular method is given by the BUTCHER tableau

1
2

!
p
3
6

1
4

1
4

!
p
3
6

1
2
C

p
3
6

1
4
C

p
3
6

1
4

1
2

1
2

(5.41)

We note that this method is implicit and mention that it corresponds to the two point
GAUSS-LEGENDRE quadrature of Sect. 3.6.

A further improvement of implicit RUNGE-KUTTA methods can be achieved by
choosing the Yi in such a way that they correspond to solutions of the differential
equation (5.7) at intermediate time steps. The intermediate time steps at which
one wants to reproduce the function are referred to as collocation points. At these
points the functions are approximated by interpolation on the basis of LAGRANGE

book by Press et al:
For many scientific users, fourth-order Runge-Kutta is not just the first word on ODE
integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive step-size algorithm. Keep in
mind, however, that the old workhorse’s last trip may well take you to the poorhouse:
Bulirsch-Stoer or predictor-corrector methods can be very much more efficient for
problems where high accuracy is a requirement. Those methods are the high-strung
racehorses. Runge-Kutta is for ploughing the fields.

The Kepler Problem, revisited

A. Glatz: Computational Physics 21

Before, we did not use real equations of motion. In fact these were first order
equations, based on energy considerations. Still produce correct trajectories with
correct initial conditions.
Here we start with the Hamilton function:

resulting in Hamilton’s equations of motion:

discretization:

76 5 Ordinary Differential Equations: Initial Value Problems

Here a.p; q/ D rpH.p; q/ and b.p; q/ D !rqH.p; q/ have already been defined
in Sect. 4.2.

Symplectic RUNGE-KUTTA

It can be demonstrated that a RUNGE-KUTTA method is symplectic if the coeffi-
cients fulfill

biaij C bjaji D bibj ; (5.61)

for all i; j [16, 18]. This is a property of the collocation methods based on GAUSS

points ci.

5.5 An Example: The KEPLER Problem, Revisited

It has already been discussed in Sect. 4.2 that the HAMILTON function of this system
takes on the form [19]

H.p; q/ D 1

2

!
p21 C p22

"
! 1
q
q21 C q22

; (5.62)

and HAMILTON’s equations of motion read

Pp1 D !rq1H.p; q/ D ! q1

.q21 C q22/
3
2

; (5.63a)

Pp2 D !rq2H.p; q/ D ! q2

.q21 C q22/
3
2

; (5.63b)

Pq1 D rp1H.p; q/ D p1 ; (5.63c)

Pq2 D rp2H.p; q/ D p2 : (5.63d)

We now introduce the time instances tn D t0 C n!t and define qni " qi.tn/ and
pni " pi.tn/ for i D 1; 2. In the following we give the discretized recursion relation
for three differentmethods, namely explicit EULER, implicit EULER, and symplectic
EULER.

76 5 Ordinary Differential Equations: Initial Value Problems

Here a.p; q/ D rpH.p; q/ and b.p; q/ D !rqH.p; q/ have already been defined
in Sect. 4.2.

Symplectic RUNGE-KUTTA

It can be demonstrated that a RUNGE-KUTTA method is symplectic if the coeffi-
cients fulfill

biaij C bjaji D bibj ; (5.61)

for all i; j [16, 18]. This is a property of the collocation methods based on GAUSS

points ci.

5.5 An Example: The KEPLER Problem, Revisited

It has already been discussed in Sect. 4.2 that the HAMILTON function of this system
takes on the form [19]

H.p; q/ D 1

2

!
p21 C p22

"
! 1
q
q21 C q22

; (5.62)

and HAMILTON’s equations of motion read

Pp1 D !rq1H.p; q/ D ! q1

.q21 C q22/
3
2

; (5.63a)

Pp2 D !rq2H.p; q/ D ! q2

.q21 C q22/
3
2

; (5.63b)

Pq1 D rp1H.p; q/ D p1 ; (5.63c)

Pq2 D rp2H.p; q/ D p2 : (5.63d)

We now introduce the time instances tn D t0 C n!t and define qni " qi.tn/ and
pni " pi.tn/ for i D 1; 2. In the following we give the discretized recursion relation
for three differentmethods, namely explicit EULER, implicit EULER, and symplectic
EULER.

76 5 Ordinary Differential Equations: Initial Value Problems

Here a.p; q/ D rpH.p; q/ and b.p; q/ D !rqH.p; q/ have already been defined
in Sect. 4.2.

Symplectic RUNGE-KUTTA

It can be demonstrated that a RUNGE-KUTTA method is symplectic if the coeffi-
cients fulfill

biaij C bjaji D bibj ; (5.61)

for all i; j [16, 18]. This is a property of the collocation methods based on GAUSS

points ci.

5.5 An Example: The KEPLER Problem, Revisited

It has already been discussed in Sect. 4.2 that the HAMILTON function of this system
takes on the form [19]

H.p; q/ D 1

2

!
p21 C p22

"
! 1
q
q21 C q22

; (5.62)

and HAMILTON’s equations of motion read

Pp1 D !rq1H.p; q/ D ! q1

.q21 C q22/
3
2

; (5.63a)

Pp2 D !rq2H.p; q/ D ! q2

.q21 C q22/
3
2

; (5.63b)

Pq1 D rp1H.p; q/ D p1 ; (5.63c)

Pq2 D rp2H.p; q/ D p2 : (5.63d)

We now introduce the time instances tn D t0 C n!t and define qni " qi.tn/ and
pni " pi.tn/ for i D 1; 2. In the following we give the discretized recursion relation
for three differentmethods, namely explicit EULER, implicit EULER, and symplectic
EULER.

76 5 Ordinary Differential Equations: Initial Value Problems

Here a.p; q/ D rpH.p; q/ and b.p; q/ D !rqH.p; q/ have already been defined
in Sect. 4.2.

Symplectic RUNGE-KUTTA

It can be demonstrated that a RUNGE-KUTTA method is symplectic if the coeffi-
cients fulfill

biaij C bjaji D bibj ; (5.61)

for all i; j [16, 18]. This is a property of the collocation methods based on GAUSS

points ci.

5.5 An Example: The KEPLER Problem, Revisited

It has already been discussed in Sect. 4.2 that the HAMILTON function of this system
takes on the form [19]

H.p; q/ D 1

2

!
p21 C p22

"
! 1
q
q21 C q22

; (5.62)

and HAMILTON’s equations of motion read

Pp1 D !rq1H.p; q/ D ! q1

.q21 C q22/
3
2

; (5.63a)

Pp2 D !rq2H.p; q/ D ! q2

.q21 C q22/
3
2

; (5.63b)

Pq1 D rp1H.p; q/ D p1 ; (5.63c)

Pq2 D rp2H.p; q/ D p2 : (5.63d)

We now introduce the time instances tn D t0 C n!t and define qni " qi.tn/ and
pni " pi.tn/ for i D 1; 2. In the following we give the discretized recursion relation
for three differentmethods, namely explicit EULER, implicit EULER, and symplectic
EULER.

…

A. Glatz: Computational Physics 22

5.5 An Example: The KEPLER Problem, Revisited 77

Explicit EULER

In case of the explicit EULER method we have simple recursion relations

pnC11 D pn1 ! qn1!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.64a)

pnC12 D pn2 ! qn2!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.64b)

qnC11 D qn1 C pn1!t ; (5.64c)

qnC12 D qn2 C pn2!t : (5.64d)

Implicit EULER

We obtain the implicit equations

pnC11 D pn1 ! qnC11 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.65a)

pnC12 D pn2 ! qnC12 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.65b)

qnC11 D qn1 C pnC11 !t ; (5.65c)

qnC12 D qn2 C pnC12 !t : (5.65d)

These implicit equations can be solved, for instance, by the use of the NEWTON

method discussed in Appendix B.

Symplectic EULER

Employing Eqs. (5.60) gives

pnC11 D pn1 ! qn1!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.66a)

pnC12 D pn2 ! qn2!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.66b)

Explicit Euler

5.5 An Example: The KEPLER Problem, Revisited 77

Explicit EULER

In case of the explicit EULER method we have simple recursion relations

pnC11 D pn1 ! qn1!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.64a)

pnC12 D pn2 ! qn2!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.64b)

qnC11 D qn1 C pn1!t ; (5.64c)

qnC12 D qn2 C pn2!t : (5.64d)

Implicit EULER

We obtain the implicit equations

pnC11 D pn1 ! qnC11 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.65a)

pnC12 D pn2 ! qnC12 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.65b)

qnC11 D qn1 C pnC11 !t ; (5.65c)

qnC12 D qn2 C pnC12 !t : (5.65d)

These implicit equations can be solved, for instance, by the use of the NEWTON

method discussed in Appendix B.

Symplectic EULER

Employing Eqs. (5.60) gives

pnC11 D pn1 ! qn1!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.66a)

pnC12 D pn2 ! qn2!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.66b)

Implicit Euler

…

A. Glatz: Computational Physics 23

Symplectic Euler

78 5 Ordinary Differential Equations: Initial Value Problems

qnC11 D qn1 C pnC11 !t ; (5.66c)

qnC12 D qn2 C pnC12 !t : (5.66d)

These implicit equations can be solved analytically and we obtain

pnC11 D pn1 ! qn1!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.67a)

pnC12 D pn2 ! qn2!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.67b)

qnC11 D qn1 C pn1!t ! qn1!t
2

Œ.qn1/2 C .qn2/2"
3
2

; (5.67c)

qnC12 D qn2 C pn2!t ! qn2!t
2

Œ.qn1/2 C .qn2/2"
3
2

: (5.67d)

A second possibility of the symplectic EULER is given by Eq. (4.33). It reads

pnC11 D pn1 ! qnC11 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.68a)

pnC12 D pn2 ! qnC12 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.68b)

qnC11 D qn1 C pn1!t ; (5.68c)

qnC12 D qn2 C pn2!t : (5.68d)

The trajectories calculated using these four methods are presented in Figs. 5.1
and 5.2, the time evolution of the total energy of the system is plotted in Fig. 5.3.
The initial conditions were [16]

p1.0/ D 0; q1.0/ D 1 ! e ; (5.69)

and

p2.0/ D
r
1C e
1 ! e

; q2.0/ D 0 ; (5.70)

with e D 0:6 which gives H D !1=2. Furthermore, we set !t D 0:01 for the
symplectic EULER methods and !t D 0:005 for the forward and backward EULER

methods in order to reduce the methodological error. The implicit equations were
solved with help of the NEWTON method as discussed in Appendix B. The JACOBI

Numerical solutions

A. Glatz: Computational Physics 24

Initial conditions:

78 5 Ordinary Differential Equations: Initial Value Problems

qnC11 D qn1 C pnC11 !t ; (5.66c)

qnC12 D qn2 C pnC12 !t : (5.66d)

These implicit equations can be solved analytically and we obtain

pnC11 D pn1 ! qn1!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.67a)

pnC12 D pn2 ! qn2!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.67b)

qnC11 D qn1 C pn1!t ! qn1!t
2

Œ.qn1/2 C .qn2/2"
3
2

; (5.67c)

qnC12 D qn2 C pn2!t ! qn2!t
2

Œ.qn1/2 C .qn2/2"
3
2

: (5.67d)

A second possibility of the symplectic EULER is given by Eq. (4.33). It reads

pnC11 D pn1 ! qnC11 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.68a)

pnC12 D pn2 ! qnC12 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.68b)

qnC11 D qn1 C pn1!t ; (5.68c)

qnC12 D qn2 C pn2!t : (5.68d)

The trajectories calculated using these four methods are presented in Figs. 5.1
and 5.2, the time evolution of the total energy of the system is plotted in Fig. 5.3.
The initial conditions were [16]

p1.0/ D 0; q1.0/ D 1 ! e ; (5.69)

and

p2.0/ D
r
1C e
1 ! e

; q2.0/ D 0 ; (5.70)

with e D 0:6 which gives H D !1=2. Furthermore, we set !t D 0:01 for the
symplectic EULER methods and !t D 0:005 for the forward and backward EULER

methods in order to reduce the methodological error. The implicit equations were
solved with help of the NEWTON method as discussed in Appendix B. The JACOBI

78 5 Ordinary Differential Equations: Initial Value Problems

qnC11 D qn1 C pnC11 !t ; (5.66c)

qnC12 D qn2 C pnC12 !t : (5.66d)

These implicit equations can be solved analytically and we obtain

pnC11 D pn1 ! qn1!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.67a)

pnC12 D pn2 ! qn2!t

Œ.qn1/2 C .qn2/2"
3
2

; (5.67b)

qnC11 D qn1 C pn1!t ! qn1!t
2

Œ.qn1/2 C .qn2/2"
3
2

; (5.67c)

qnC12 D qn2 C pn2!t ! qn2!t
2

Œ.qn1/2 C .qn2/2"
3
2

: (5.67d)

A second possibility of the symplectic EULER is given by Eq. (4.33). It reads

pnC11 D pn1 ! qnC11 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.68a)

pnC12 D pn2 ! qnC12 !t

Œ.qnC11 /2 C .qnC12 /2"
3
2

; (5.68b)

qnC11 D qn1 C pn1!t ; (5.68c)

qnC12 D qn2 C pn2!t : (5.68d)

The trajectories calculated using these four methods are presented in Figs. 5.1
and 5.2, the time evolution of the total energy of the system is plotted in Fig. 5.3.
The initial conditions were [16]

p1.0/ D 0; q1.0/ D 1 ! e ; (5.69)

and

p2.0/ D
r
1C e
1 ! e

; q2.0/ D 0 ; (5.70)

with e D 0:6 which gives H D !1=2. Furthermore, we set !t D 0:01 for the
symplectic EULER methods and !t D 0:005 for the forward and backward EULER

methods in order to reduce the methodological error. The implicit equations were
solved with help of the NEWTON method as discussed in Appendix B. The JACOBI

Parameters: e=0.6, ∆t=0.01 for Symplectic
Euler, ∆t=0.005 else

5.5 An Example: The KEPLER Problem, Revisited 79

Fig. 5.1 KEPLER trajectories in position space for the initial values defined in Eqs. (5.69)
and (5.70). They are indicated by a solid square. Solutions have been generated (a) by the explicit
EULER method (5.64), (b) by the implicit EULER method (5.65), (c) by the symplectic EULER
method (5.67), and (d) by the symplectic EULER method (5.68)

matrix was calculated analytically, hence no methodological error enters because
approximations of derivatives were unnecessary.

According to theory [19] the q-space and p-space projections of the phase space
trajectory are ellipses. Furthermore, energy and angular momentum are conserved.
Thus, the numerical solutions of HAMILTON’s equations of motion (5.63) should
reflect these properties. Figures 5.1a, b and 5.2a, b present the results of the
explicit EULER method, Eqs. (5.64), and the implicit EULER method, Eqs. (5.65),
respectively. Obviously, the result does not agree with the theoretical expectation
and the trajectories are open instead of closed. The reason for this behavior is
the methodological error of the method which is accumulative and, thus, causes
a violation of energy conservation. This violation becomes apparent in Fig. 5.3
where the total energy H.t/ is plotted vs time t. Neither the explicit EULER method
(dashed line) nor the implicit EULER method (short dashed line) conform to the
requirement of energy conservation. We also see step-like structures of H.t/. At the
center of these steps an open diamond symbol and in the case of the implicit EULER

method an additional open circle indicate the position in time of the perihelion
of the point-mass (point of closest approach to the center of attraction). It is

Explicit Euler Implicit Euler

Symplectic Euler (two versions)

… (p space)

A. Glatz: Computational Physics 25

80 5 Ordinary Differential Equations: Initial Value Problems

Fig. 5.2 KEPLER trajectories in momentum space for the initial values defined in Eqs. (5.69)
and (5.70). They are indicated by a solid square. Solutions have been generated (a) by the explicit
EULER method (5.64), (b) by the implicit EULER method (5.65), (c) by the symplectic EULER
method (5.67), and (d) by the symplectic EULER method (5.68)

Fig. 5.3 Time evolution of the total energy H calculated with the help of the four methods
discussed in the text. The initial values are given by Eqs. (5.69) and (5.70). Solutions have been
generated (i) by the explicit EULER method (5.64) (dashed line), (ii) by the implicit EULER
method (5.65) (dotted line), (iii) by the symplectic EULER method (5.67) (solid line), and (iv)
by the symplectic EULER method (5.68) (dashed-dotted line)

Energy

A. Glatz: Computational Physics 26

80 5 Ordinary Differential Equations: Initial Value Problems

Fig. 5.2 KEPLER trajectories in momentum space for the initial values defined in Eqs. (5.69)
and (5.70). They are indicated by a solid square. Solutions have been generated (a) by the explicit
EULER method (5.64), (b) by the implicit EULER method (5.65), (c) by the symplectic EULER
method (5.67), and (d) by the symplectic EULER method (5.68)

Fig. 5.3 Time evolution of the total energy H calculated with the help of the four methods
discussed in the text. The initial values are given by Eqs. (5.69) and (5.70). Solutions have been
generated (i) by the explicit EULER method (5.64) (dashed line), (ii) by the implicit EULER
method (5.65) (dotted line), (iii) by the symplectic EULER method (5.67) (solid line), and (iv)
by the symplectic EULER method (5.68) (dashed-dotted line)

Implicit Euler

Explicit Euler

Symplectic Euler (two versions)

Lab (today &) Thursday

A. Glatz: Computational Physics 27

Read chapter 5.4 for Symplectic integrators used for
Hamiltonian systems to preserve energy better.

Implement explicit methods for the Hamilton
equations. Reproduce Figs. (a) & (c).

Homework:
• Problems: Chapter 5: 1,2,4
• Extra credit: Solve implicit Euler using Newton’s

method (appendix B)

Possible final project: Solve the full two-body problem for different masses & initial
conditions using appropriate Hamilton equations with a symplectic method (in 3D, with
animation?)

