O 0 = O - O =00 ™ ™ = 00 00 ™Y™Y O ™ ™YW v~ O v v~ »vd

O™ O 0O = QA v = IRl) 0O o= O v = 1 £

10Nns.

o
©
Wum
do
S 0
g0
Qv Q-
-

Q
£ 3
g, (5
Q>

o
.mm

=
2
&
O
>
O
A

» Runge-Kutta Methods

» Simple integrators
» Examples

Ord

o = B o B o == (B == = =P b = s =l T] s B e = e e T T e T = T o B B =

e B o B == B = (B o (S o (] s (o £ e b s | e e o b [s T e R e B e B e T o T v R o [o B = i

Initial value problem

We already introduced explicit, implicit, and midpoint Euler
methods. Now we introduce a more general context.

v(t) = f(y, 1),
* |[nitial value problem: Y0 =70-1 y = ﬂ
y(0) = yo , dt
assumes an explicit form, meaning in G(y) =f0,1)

G(.) is analytically invertible.

y(0) = yo .

E.g. differential equations of form y + log (y) =1
are not explicit.

Higher order differential equations

* the above Eq. is a first order differential equation iny

* However, every explicit differential equation of order n
can be decomposed in n coupled first order differential

equations: " . n—
Y = f(63, 9,5,y D)
& yi =y,
y2 = y3,
yn—l — yl’l)

j}n:f(tayl’yz ----- Yn)

i.e. the differential equation is explicit if explicit in y™

Numerical solutions

Even seemingly simple differential equations cannot be solved
analytically and need numerical treatment, e.g.:

. 2 2

y=1r -y
is difficult to solve and not well posed: no initial condition given
But: Numerical methods are no excuse for poor analysis
(Sometimes numerical solutions are used even when an

analytical solution is possible.)

Next, we discretize t again as t,=t,+nAt and y,=y(t,), i.e.

Yo = F Vns tn)

A. Glatz: Computational Physics

Simple Integrators

Integration the above differential equation over a At interval:
et / IN
Yn+1 :yn_l_/ dtfb)(t)at]
In

Note: This is still exact!

Approximations for the integral:
* rectangular rule gives:

= y, + 1) At + O(AF

Explicit or forward Euler method

Note, O(At?) means the following terms in this Taylor series are of order At? or
higher.

A. Glatz: Computational Physics

compare to Big- O -notation

Informal usage in Computer Science (and not in the mathematical sense):

An algorithm can be said to exhibit a growth rate on the order of a mathematical function if
beyond a certain input size n, the function f(n) times a positive constant provides an upper
bound or limit for the run-time of that algorithm.

In other words, for a given input size n greater than some n, and a constant ¢, the running
time of that algorithm will never be larger than c x f(n). This concept is frequently expressed
using Big- O -notation. For example, since the run-time of insertion sort grows quadratically
as its input size increases, insertion sort can be said to be of order O(n?).

Big- O -notation is a convenient way to express the worst-case scenario for a given
algorithm, although it can also be used to express the average-case — for example, the

worst-case scenario for quicksort is O(n?), but the average-case run-time is O(n log n).

See also Computational complexity theory

more simple integrators

* the backward rectangular rule gives:

L S e)Mt 0A0)

implicit or backward Euler method/scheme
- needs solving for vy, .4
e central rectangular rule

it =0 O)81+ 08)

or Ynt+1 = Yn—1 T Zf(yna tn)At + ﬁ(Alﬁ)

using two time steps
leap-frog routine or Stormer-Verlet method

, o Yn Tt Yt
using Yu+i ® > gives the implicit midpoint rule

A. Glatz: Computational Physics

Using the trapezoidal rule gives:

At :

Crank-Nicolson or trapezoidal method (implicit)
* The leap-frog method is a multi-step method, since it involves

values at three different times to evolve the solution in time
* All others are single-step methods (need only t, and t,,,).

A. Glatz: Computational Physics

Improvements of the simple methods

* Taylor series methods: Use more terms in the Taylor expansion
of Yh+1-

* Linear Multi-Step methods: Use data from previous time steps
Vi, kK<n in order to cancel terms in the truncation error.

* Runge-Kutta method: Use intermediate points within one time
step.

Taylor series methods

Taylor series of y,,; around y,.:

. AP, ;
yn-l—lzyn_l_Atyn | 2)’n+ﬁ(At)

which gives: A7
Ynt+1 = Yn + Atf(Yn, tn) + Tyn T ﬁ(AlB)

having still error At?, but with

d . .
= < F O t) = F O)+ Os)30 = F O)+ O) s 1)
we get)
A i
Vurt = Yok Af O o) + = [FOns 1) +F O t)f G, 12)] + O(AF)

with error At3 =

Linear multi-step methods

A k-th order linear multi-step method is defined by the
approximation

k k+1
V41 = Z a;Yn—j + AIZ bjf(yn—l—l—ja tn—l—l—j)
j=0 J=0

coefficients a; and b; have to be determined in such a way that the
local truncation error is reduced
For example, the Adams-Bashford method

A
Yn+1 = Yn T+ TI [3f(.Vna tn) _f(Yn—la tn—l)]

or the second order rule (backward differentiation formula)

1 At
Yn+1 = g 4}711 — VYn—1 T 7f()’n—|—1a tn—l—l)
* multi-step methods are often based on the interpolation of

previously computed values y, by Lagrange polynomials

k k+1

Ynt1 = Z ajyn—j + Atz bif Vn+1-j, tnt1-))

J=0 J=0

Note

is explicit for by=0 and implicit for b,z0.

In many numerical realizations one combines implicit and explicit

multi-step methods in such a way that the explicit result with

b,=0 is used as a guess to solve the implicit equation with byz0.

- the explicit method predicts the value y,,; and the implicit
method corrects it.

Such methods yield very good results and are commonly referred

to as predictor—corrector methods.

Runge-Kutta methods

* In contrast to multi-step methods, Runge-Kutta methods
improve the accuracy by calculating intermediate grid-points
within the interval [t,, t..4].

* Note, the central rectangular rule approximation results in such
a method, since the function value vy,,,, at the grid-point
t,1,=t,+At/2 is used:

* Next, find approximations for y,,1,. Usmg explicit Euler gives:

A

l. At
— VYn — Vn — ns In
SV =yn + 2f(y)

e resultingin: Ar Ar
Yn+1 = Yn +f ‘ Yn + _a f O tn), tn + _a ‘ At + ﬁ(Atz)

icit midpoint rul
A. Glatz: Computational Physics epr|C|t de trule 13

yn-l-% = Yn T+

Using instead the average approximation, results in the
implicit midpoint rule

both have error O(At?)

A. Glatz: Computational Physics

14

Algorithmic form

Introduce variables Y,

solve for Y,
—> Explicit Euler: Yi=Yu, ™=
Yn+1 = Yn + (Y1, 1) At
—> Implicit Euler: Y1 =y +f (Y1, ths1) At

Y1 = Yn + (Y1, bay1) At

—> Crank-Nicolson:

le)’n, ¢

At
Yo =y, + X [f(Y1,t,) +f(Ya, t,41)] solvefory,

A
Vurt = o+ S0 (V1 8) + f (Vs 1)

A. Glatz: Computational Physics 15

e explicit midpoint rule

* implicit midpoint rule

Y,

Y2 _yn
Yn+1 —Yn
Yl _yn

Vn+1 = Yn + Atf (Ylatn +

(Yl,tn +

(Y29 tl’l +

(At
Yl’tl’l

P w|5
\

NIL%
<

I
~
\/\/

These are examples of Kunge-Kutta methods

A. Glatz: Computational Physics

16

general d-stage Runge-Kutta (RK)
method

Fully determined by coefficients aj,

vectors.
Useful way to describe RK
methods by Butcher tableaus:

A. Glatz: Computational Physics

b., C

=)
where A={a;} is a dxd matrix, b={b;} and c={c;} d-dimensional

C1
&)

ail d12 ... di4d
ary dyy ... Ayqg

aq1 Aq2 - .. Aqd

by by ... bg

17

Butcher tableaus

explicit methods methods have zeros on and above the diagonal of A

Explicit Euler

00
1

Explicit Midpoint

- O
N—=Nl—= O
o= O O

A. Glatz: Computational Physics

Implicit Euler Crank-Nicolson
1 1 000
1 1
I3 3
11
2 2
Implicit Midpoint

1
2

—_ ol

18

RK4 method

Using the general RK scheme one can develop arbitrarily precise methods
Most famous:
» four stage RK: Y1 = Yn.
At
RK4 or e-RK-4 Ys = y, + jf(Yl,tn) ’

e explicit 00000
Y—y+Atf(Y2t+At) .y
3 — Jn 7 s In 7 , 11
§ 112000
Y4=yn—|-Atf(Y3,tn—|—7), % O % O O
A
)’n+1=yn-|—zt[f(Yl,tn)—l—Zf(Yz,tn_F%) 1 O O 1 O
L1111
+2f(Y3,zn+%) —I—f(Y4,tn)]. 6 3 3 6

is analog to Simpson rule for integration

Another popular method is defined by

N[— | —
o[
w

+

It
Bl—
PNy

=
2

9]

O — s | —

N —

is related to Gauss-Legendre 2-point method.

book by Press et al:

For many scientific users, fourth-order Runge-Kutta is not just the first word on ODE
integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive step-size algorithm. Keep in
mind, however, that the old workhorse’s last trip may well take you to the poorhouse:
Bulirsch-Stoer or predictor-corrector methods can be very much more efficient for
problems where high accuracy is a requirement. Those methods are the high-strung
racehorses. Runge-Kutta is for ploughing the fields.

The Kepler Problem, revisited

Before, we did not use real equations of motion. In fact these were first order
equations, based on energy considerations. Still produce correct trajectories with
correct initial conditions.

Here we start with the Hamilton function:

H(p,q) =

1
(p1+p3) —
VG + &

. qd1
pr=-VgHp,q) = —————
(g7 + q3)2
.)
. P2 = _VQ2H(p’Q) - o) 2 2
p? = pi(tn) fori = 1,2 (g7 + 43)2
ql — Vp1H(paQ) =P1,

g> = V,,H(p,q) = p> .

DN | —

resulting in Hamilton’s equations of motion:

discretization: n — ..
q, = %(tn)

Explicit Euler
. . q’| At
p1+1:p1_ n21 212
[(ql) + (qZ)]2
. . qs At
p2+1 = P~ 2

3
[(4})? + (45)?]>
it =g} + piAt,

& = g5+ phAt.

A. Glatz: Computational Physics

Implicit Euler
pn—l-l _ pn quH_lAt
T n 3
[(¢i™)2 + (g57H)?2
n+1
. . q," At
P2+1 = ph 2

Con n 3
(417> + (g5

¢ =di+pit A

g =gy +py A

22

A. Glatz: Computational Physics

Symplectic Euler

. . q’ At
Pl = pt - n21 —
[(%) + (Q2) |2
n+1 n ant
p2+ =p2_ n22 n2§,
[(g7)* + (g3)°]>
q1+1:q1—|—p1At— n21 —
[(g])* + (g3)°]>
GHAL

n+1 n n
4, = q, +prAt— 3
[(¢7)* + (g3)*]2

23

Numerical solutions

Initial conditions:

p1(0) =0, gi(0)=1—e¢ Euler, At=0.005 else
l+e
p2(0) = T ¢2(0) =0
a Explicit Euler b) 10 Implicit Euler
10
05l 0.5
o 00¢ , o 00¢f
05+ 05|
10l Start
20 5 10 05 00 05 10 45 40 05 00 05
a, . a, .
Symplectic Euler (two véersions)
(c) 10 (d) 1.0
0.5+ 05 r
o 00rF o 00+
05} 05 |
1.0 : : : : 1.0 ‘ ‘ ‘ ‘
-2.0 -1.5 -1.0 -0.5 0.0 0.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

A. Glatz: Computational Physics 9 a

Parameters: e=0.6, At=0.01 for Symplectic

24

@ of

1.5

1.0

P,

0.0
-0.5

-1.0

(c)

2.0
1.5

0.0

-0.5

-1.0

-1.5

A. Glatz: Computational Physics

... (p space)

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

1.5

0.5

1.5

(b)

o~
o

(d)

2.0
1.5 -
1.0 -
0.5
0.0 -
-0.5 -

-1.0
-1.5

2.0

1.0
0.5
0.0
05|

-1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

25

Energy

-0.3
04 - Explicit Euler ,<>
s m s s mo oo m—ommmm
0.5 == e T W=
_________________________________ ‘ Symplectic Euler (two|versions)
-0.6 |-
- 3
T 07} e
Implicit Euler
-0.8 | Q
09}
_10 | 2 | | 2 | 2
0 2 4 6 8 10
t

A. Glatz: Computational Physics

26

Lab (today &) Thursday

Implement explicit methods for the Hamilton
equations. Reproduce Figs. (a) & (c).

Homework:
 Problems: Chapter 5:1,2,4
e Extra credit: Solve implicit Euler using Newton’s

method (appendix B)

Read chapter 5.4 for Symplectic integrators used for
Hamiltonian systems to preserve energy better.

Possible final project: Solve the full two-body problem for different masses & initial
conditions using appropriate Hamilton equations with a symplectic method (in 3D, with

animation?)

