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Equation of motion

1. generalized coordinates
2. Lagrange function for 2D double pendulum
3. generalized momenta & Hamilton function

coordinates for the two point masses: 2

x1 = £sin(¢)
71 = 24 — £ cos(py)

x = £ [sin(@1) + sin(¢)]
72 = 2£ — £ [cos(¢1) + cos(¢2)]

Here both length (and masses) are the same:

- total length 2 £=const. (for simulation introduce m;, m, and £;, £,)
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Time derivatives and energies

e using the above coordinates, we get:
x1 = Lo cos(gy) ,
21 = Ly sin(py)
Xy = £ [¢1 cos(@r) + @2 cos(¢a)]
22 = L g1 sin(gr) + @2 sin(e2)]

 Reminder Lagrange function (Lagrangian): L=T-U, here

kinetic energy My
r== (5] + 27 + %5 + 23)
sin(x) sin(y) + cos(x) cos(y) = cos(x — y) ml2

= (207 + @5 + 29162 cos(p1 — @) ]

potential energy U = mgz; + mgz

= mgl [4 — 2 cos(p;) — cos(¢)]



Lagrangian

Therefore, the Lagrangian for the double pendulum is

2
ml T

From this we get the generalized momenta:
d 2ima
p1 = @L = mt” [2¢1 + @2 cos(@1 — ¢2)]
1

d o
—L = ml?[¢r + @1 cos(¢) — @2)]

P2 = —
G175

To get the Hamilton function (Hamiltonian), we need to express
the kinetic energy in term of the generalized momenta p; & p,
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kinetic energy rewrite

Using the expression for p; and p,, we express dg,/dt and d¢, /dt in terms of p,

and p,
» first we solve the expression for p, for @,:

. P
@2 = —— — ¢1c0s(¢1 — ¢2)
mt

 which we then insert in the p; expression:

o1 = [2—cos* (@1 — @2)] [nféz - nljzz cos(¢1 — @2)]
which rewrites to .1 pi—pacos(pr — )
L e 1 + sin®(¢; — @)
and similarity .1 p1cos(gr — @2) — p2 cos* (g1 — ¢2)
T e [pz - I+ sin® (g1 — ¢2) ]

1 2py —picos(er — ¢2)
ml? 1 +sin* (g1 —¢2)




* this gives ml?

T=——[201 + ¢ + 20192 cos(g1 — ¢2)]
1 p% + 2p% — 2p1p2 cos(¢1 — @)
2ml? 1 + sin*(p1 — @) |

The Hamiltonian then follows from H=T+U:
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Equations of motion

Now we can write the Hamilton equations of motion:

v O =Y
(pl_api ’ pl_ agpl

which results in the following coupled differential equations:

H, i=1,2

A. Glatz: Computational Physics



Numerical Solution

We will use RK4 to solve these equations numerically.

We rewrite using the 4D vector: Vi @1
y = 21| %
Y3 P1
Y4 P2
With this the EoM have the form: v i)
¢ | _ | 200
| =F@) =
P1 HO)
P2 f2(y)

and we discretize the time as usual t,=nAt, y,=y(t,)

Yl:yl’l9

At

RK4: At

Y3 =y, + TF(Yz),

Yol = Yn + % [F(Y1) + 2F(Y5) + 2F(Y3) + F(Y4)]



Solutions ()

Using the RK4 scheme we can expect the following solutions
@ 1o
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initial conditions:
- origin at (0,2)
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initial conditions:
¢1(0)=1.0
¢,(0)=0
p1(0)=0.0
p,(0)=3.0

?,
o

Parameters
m=1kg, £=1m
g=9.8067m/s?

(b) At=0.001

N=60,000
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initial conditions:

©1(0)=¢,(0)=0
p1(0)=0.0
P,(0)=4.0

Parameters
m=1kg, £=1m
g=9.8067m/s?

At=0.001
N=60,000
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Numerical Analysis of Chaos

Notation:
system with f degrees of freedom at time t completely determined by:
 generalized coordinates: qi1(t),...,qr(1)
 generalized momenta:

® pi(2),...,pr(0)

The vector q(t)=(q4(t),..., q:(t))" is a point in configuration space.
For the double pendulum: f=2 and q;(t)=¢,(t)€(-m, ], i=1,2

The 2f-dimensional vector x(t) )=(q4(t),..., g¢(t), p1(t),..., p¢(t)))" is a point in
phase-space and the time evolution of the system is described by the phase-
space trajectory x(t).

In an autonomous (or time-invariant) system the total energy is conserved

0
EH(X, t) =0



A system is integrable if f independent invariants /,,..., Is exist (one would be the
energy)

[i(x) =[j=const, j=1,....f
A 1D autonomous system is always integrable (/,=E)
Non-integrable systems can show chaotic behavior.
* trajectories can be strongly dependence on the initial conditions

* makes an analytic calculation of the dynamics extremely difficult.

However, since the trajectories can be computed without problems by numeric
means, we discuss now how to characterize chaotic behavior on the computer.
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Analysis of autonomous systems

* We analyze the system by looking at two different initial conditions x, and x’,
« After time t, these evolved into x(t) and x’(t)
« We define the distance in phase-space d(t)=|x(t)-x’(t)| with some norm |.].

A solution x(t) is stable if

Ve >038(e) >0:Vx,:d0)<§=4d(t) <e¢, V>0
or
A solution is stable if the trajectory x’(t), corresponding to the perturbed initial
condition x’,, stays within a tube of radius € around the unperturbed trajectory
X(t) for all t>0

* Asymptotically stable: d(t)=>0 for t—> oo

These solutions attract neighboring solutions: They are attractors
 Asolution is a periodic orbit if x(t)=x(t+7) for all x(t)
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Poincaré maps

To study non-integrable system, it is useful to use a topological method: Poincaré

maps:

e Study only intersection point of x(t) with a 2f-1 dimensional manifold X in the 2f
-dimensional phase-space

X istransverse to x(t), i.e., x(t) is not parallel or within X

* For periodic or, more general, bound trajectories, x(t) has multiple intersections
with X

* A Poincaré map is then the mapping of one intersection point to the next

For example:

e if xo€ X and x(t) is periodic, the next intersection ——
point X,;=Xx(7)=X,. |

e for aslightly perturbed x’,€U,(x,), the trajectory will
in general not be quite periodic and the next
intersection point x"#x’,. X’ 1EU4(X,)

e The map P(x’g)=x’ is the Poincaré map.
[above P(xy)=X, : a fixed point]

e Uy(xp) is a “neighborhood” region of x,, U;(x,) the
neighborhood of the first return




Poincaré plots

Two possible scenarios for integrable systems
i. number of intersection points is finite
ii. orinfinite

For non-integrable systems a third case is possible:
iii. chaotic behavior: intersection points are space filling

Case of the double pendulum:

* Since E=const, the available phase-space is a three-
dimensional manifold in the (¢4, @,, p1, P,)-space

* define the 2D Poincare section X as ¢,(t)=0 and p,>0

* intersection points form lines in X, either disconnected
(case i) or connected (case ii)

A. Glatz: Computational Physics
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Double pendulum: Poincaré plots
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Lab (today &) Thursday

mplement RK4 for the double pendulum
Reproduce the different solutions in ¢, and ¢, space,
0, and p, space and real space trajectories

Homework:

e Chapter 6, problems1-4
For #4, derive the Hamilton equations of motion
explicitly




