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Double Pendulum
Ø Hamilton’s Equation
Ø Numerical Solution
Ø Numerical Analysis of Chaos



Equation of motion

A. Glatz: Computational Physics 2

1. generalized coordinates
2. Lagrange function for 2D double pendulum
3. generalized momenta & Hamilton function

coordinates for the two point masses: 

Here both length (and masses) are the same:
à total length 2 ℓ=const. (for simulation introduce m1, m2 and ℓ1, ℓ2)

86 6 The Double Pendulum

Fig. 6.1 Schematic
illustration of the double
pendulum. m are the
point-masses, 2` is the total
length of the pendulum and
'1, '2 are the corresponding
angles

The LAGRANGE function of the system is defined by

L D T ! U ; (6.7)

with the kinetic energy T and the potential U. The kinetic energy T is given by1

T D m
2

!
Px21 C Pz21 C Px22 C Pz22

"

D m`2

2

#
2 P'21 C P'22 C 2 P'1 P'2 cos.'1 ! '2/

$
: (6.8)

The potential energy U is determined by the gravitational force

U D mgz1 C mgz2

D mg` Œ4 ! 2 cos.'1/! cos.'2/! ; (6.9)

where g is the acceleration due to gravity. Hence, we get for the LAGRANGE

function L:

L D m`2

2

#
2 P'21 C P'22 C 2 P'1 P'2 cos.'1 ! '2/

$
! mg` Œ4 ! 2 cos.'1/! cos.'2/! :

(6.10)

1We make use of the relation:

sin.x/ sin.y/C cos.x/ cos.y/ D cos.x ! y/ :

Chapter 6
The Double Pendulum

6.1 HAMILTON’s Equations

We investigate the dynamics of the double pendulum in two spacial dimensions
as illustrated schematically in Fig. 6.1. It is the aim of this section to derive
HAMILTON’s equations of motion for this system. In a first step we introduce
generalized coordinates and determine the LAGRANGE function of the system from
its kinetic and potential energy [1–5]. We then introduce generalized momenta
and, finally, derive the HAMILTON function from which HAMILTON’s equations of
motion follow. They will serve as a starting point for the formulation of a numerical
method.

From Fig. 6.1 we find the coordinates of the two point masses m:

x1 D ` sin.'1/ ; z1 D 2` ! ` cos.'1/ ; (6.1)

and

x2 D ` Œsin.'1/C sin.'2/! ; z2 D 2` ! ` Œcos.'1/C cos.'2/! : (6.2)

Here, 2` is the pendulum’s total length. The angles 'i, i D 1; 2 are defined in
Fig. 6.1.

We note that ` D const and obtain the time derivatives of the coordinates (6.1)
and (6.2):

Px1 D ` P'1 cos.'1/ ; (6.3)

Pz1 D ` P'1 sin.'1/ ; (6.4)

Px2 D ` Œ P'1 cos.'1/C P'2 cos.'2/! ; (6.5)

Pz2 D ` Œ P'1 sin.'1/C P'2 sin.'2/! : (6.6)
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Time derivatives and energies

A. Glatz: Computational Physics 3

• using the above coordinates, we get:

• Reminder Lagrange function (Lagrangian): L=T-U, here
kinetic energy

potential energy
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Lagrangian

A. Glatz: Computational Physics 4

Therefore, the Lagrangian for the double pendulum is

From this we get the generalized momenta:

To get the Hamilton function (Hamiltonian), we need to express 
the kinetic energy in term of the generalized momenta p1 & p2
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We find a description of the motion in phase space by calculating the generalized
momenta pi, i D 1; 2 as

p1 D
@

@ P'1
L D m`2 Œ2 P'1 C P'2 cos.'1 ! '2/! ; (6.11)

and

p2 D
@

@ P'2
L D m`2 Œ P'2 C P'1 cos.'1 ! '2/! : (6.12)

The aim is now to express the kinetic energy (6.8) in terms of generalized
momenta p1 and p2. To accomplish this we solve in a first step Eq. (6.12) for P'2
and obtain

P'2 D
p2
m`2

! P'1 cos.'1 ! '2/ : (6.13)

This is used to rewrite Eq. (6.11). Solving for P'1 gives:

P'1 D
!
2 ! cos2.'1 ! '2/

"!1 h p1
m`2

! p2
m`2

cos.'1 ! '2/
i
: (6.14)

The trigonometric identity cos2.x/C sin2.x/ D 1 changes Eq. (6.14) into

P'1 D
1

m`2
p1 ! p2 cos.'1 ! '2/

1C sin2.'1 ! '2/
: (6.15)

This is then used to transform Eq. (6.13) into

P'2 D
1

m`2

#
p2 ! p1 cos.'1 ! '2/! p2 cos2.'1 ! '2/

1C sin2.'1 ! '2/

$

D 1

m`2
2p2 ! p1 cos.'1 ! '2/

1C sin2.'1 ! '2/
: (6.16)

Hence, with help of Eqs. (6.15) and (6.16) we can reevaluate the kinetic
energy (6.8) to give

T D m`2

2

!
2 P'21 C P'22 C 2 P'1 P'2 cos.'1 ! '2/

"

D 1

2m`2
p21 C 2p22 ! 2p1p2 cos.'1 ! '2/

1C sin2.'1 ! '2/
: (6.17)
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kinetic energy rewrite

A. Glatz: Computational Physics 5

Using the expression for p1 and p2, we express d𝜑1/dt and d𝜑2 /dt in terms of p1
and p2
• first we solve the expression for p2 for 𝜑2:

• which we then insert in the p1 expression:

which rewrites to

and similarity
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…
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• this gives

The Hamiltonian then follows from H=T+U:
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p1 D
@

@ P'1
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p2 D
@

@ P'2
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!
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"!1 h p1
m`2

! p2
m`2

cos.'1 ! '2/
i
: (6.14)
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P'1 D
1
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1

m`2

#
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D 1
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The HAMILTON functionH.p1; p2; '1; '2/ is the sum of the kinetic energy (6.17)
and the potential energy (6.9) and we get:

H D T C U

D 1

2m`2
p21 C 2p22 ! 2p1p2 cos.'1 ! '2/

1C sin2.'1 ! '2/
Cmg` Œ4 ! 2 cos.'1/ ! cos.'2/! : (6.18)

Thus, we are now, finally, in a position to formulate HAMILTON’s equations of
motion from

P'i D
@

@pi
H ; Ppi D ! @

@'i
H ; i D 1; 2; (6.19)

and the dynamics of the double pendulum are determined by the solutions of the
following set of differential equations:

P'1 D
1

m`2
p1 ! p2 cos.'1 ! '2/
1C sin2.'1 ! '2/

; (6.20a)

P'2 D
1

m`2
2p2 ! p1 cos.'1 ! '2/

1C sin2.'1 ! '2/
; (6.20b)

Pp1 D
1

m`2
1

1C sin2.'1 ! '2/

"
!p1p2 sin.'1 ! '2/

Cp21 C 2p22 ! 2p1p2 cos.'1 ! '2/

1C sin2.'1 ! '2/
cos.'1 ! '2/ sin.'1 ! '2/

#

!2mg` sin.'1/ ; (6.20c)

and

Pp2 D
1

m`2
1

1C sin2.'1 ! '2/

h
p1p2 sin.'1 ! '2/

!p21 C 2p22 ! 2p1p2 cos.'1 ! '2/

1C sin2.'1 ! '2/
sin.'1 ! '2/ cos.'1 ! '2/

#

!mg` sin.'2/ : (6.20d)
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Now we can write the Hamilton equations of motion:

which results in the following coupled differential equations:
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We will use RK4 to solve these equations numerically.
We rewrite using the 4D vector:

With this the EoM have the form:

and we discretize the time as usual tn=n∆t, yn=y(tn)

RK4:

6.2 Numerical Solution 89

The following section is dedicated to the numerical solution of Eqs. (6.20) with
the help of the explicit RUNGE-KUTTA algorithm e-RK-4 introduced in Sect. 5.3.

6.2 Numerical Solution

In a first step we recognize that Eqs. (6.20) are of the form

Py D F.y/ ; (6.21)

where y 2 R4. Let us define

y D

0

BB@

y1
y2
y3
y4

1

CCA !

0

BB@

'1
'2
p1
p2

1

CCA ; (6.22)

and consequently

0

BB@

P'1
P'2
Pp1
Pp2

1

CCA D F.y/ !

0

BB@

f1.y/
f2.y/
f3.y/
f4.y/

1

CCA : (6.23)

We introduce time instances tn D n!t, n 2 N and use the notation yn ! y.tn/ D
.yn1; y

n
2; y

n
3; y

n
4/

T . Furthermore, F.y/ is not an explicit function of time t and we
reformulate the e-RK-4 algorithm of Eq. (5.39) as:

Y1 D yn ;

Y2 D yn C
!t
2
F.Y1/ ;

Y3 D yn C
!t
2
F.Y2/ ;

Y4 D yn C!tF.Y3/ ;

ynC1 D yn C
!t
6
ŒF.Y1/C 2F.Y2/C 2F.Y3/C F.Y4/" : (6.24)
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Using the RK4 scheme we can expect the following solutions90 6 The Double Pendulum

Fig. 6.2 Numerical solution of the double pendulum with initial conditions '1.0/ D '2.0/ D 0:0,
p1.0/ D 4:0 and p2.0/ D 2:0. (a) Trajectory in '-space, (b) trajectory in p-space, and (c) trajectory
in local .x; z/-space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration

Hence, the only remaining challenge is to correctly implement the function F.y/ D
Œ f1.y/; f2.y/; f3.y/; f4.y/!

T according to Eqs. (6.20).
The following graphs discuss the dynamics (trajectories in '- and p-space, as

well as in configuration space) of the pendulum and for this purpose we defined the
parametersm D ` D 1 and g D 9:8067. The time step was chosen to be"t D 0:001
and we calculated N D 60;000 time steps.

We start with Fig. 6.2. The two masses numbered 1 and 2 are initially in the
equilibrium position (solid circles). Both masses are pushed to the right but the push
on mass 1 [p1.0/ D 4:0] is much stronger than the one mass 2 experiences [p2.0/ D
2:0]. Thus, mass 2 is ‘dragged’ along in the process. This is made transparent by two
‘snapshots’ indicated by solid light gray circles and solid gray circles. The motion
of the whole system is quite regular.

initial conditions:
𝜑1(0)=𝜑2(0)=0
p1(0)=4.0
p2(0)=2.0

Parameters
m=1kg, ℓ=1m
g=9.8067m/s2

∆t=0.001
N=60,000

the “regular” case

origin at (0,2)
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initial conditions:
𝜑1(0)=1.0
𝜑2(0)=0
p1(0)=0.0
p2(0)=3.0

Parameters
m=1kg, ℓ=1m
g=9.8067m/s2

∆t=0.001
N=60,000

6.2 Numerical Solution 91

Fig. 6.3 Numerical solution of the double pendulum with initial conditions '1.0/ D 1:0; '2.0/ D
0:0, p1.0/ D 0:0 and p2.0/ D 3:0. (a) Trajectory in '-space, (b) trajectory in p-space, and (c)
trajectory in local .x; z/-space. The solid circles numbered 1 and 2 represent the two masses in
their initial configuration

We proceed with Fig. 6.3. In this case mass 1 is displaced from its position by
the initial angular displacement '1 D 1:0. This initial configuration is indicated
by the solid circles numbered 1 and 2 representing the two point-masses. Mass
2 is then pushed to the right with p2.0/ D 3:0. Again, mass 1 remains on a
trajectory centered around the point .0;2/ in configuration space. But in contrast
to the previous situation it follows now mass 2. Mass 2, on the other hand, develops
a very lively trajectory, Fig. 6.3c. Two snapshots indicated by solid light gray circles
and solid gray circles illustrate configurations of particular interest.

The dynamics depicted in Fig. 6.4 is quite similar to the one already discussed
in Fig. 6.2. Initially both masses are in the equilibrium position and then mass 2 is
pushed to the right [p2.0/ D 4:0]. Thus, mass 1 is trailing behind. In contrast to the
previous Fig. 6.3 the trajectory of mass 2 will now be symmetric around the z-axis
given enough time. Again, snapshots indicated by solid light gray circles and solid
gray circles indicate interesting configurations.
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92 6 The Double Pendulum

Fig. 6.4 Numerical solution of the double pendulum with initial conditions '1.0/ D '2.0/ D 0:0,
p1.0/ D 0:0 and p2.0/ D 4:0. (a) Trajectory in '-space, (b) trajectory in p-space, and (c) trajectory
in local .x; z/-space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration

The initial condition which resulted in the trajectory shown in Fig. 6.5 differs
only for mass 2 from the initial conditions which lead to the trajectory in Fig. 6.4.
Mass 2 is now pushed evenmore strongly to the right [p2.0/ D 5:0]. Of course, mass
1 is again dragging behind mass 2. In contrast to Fig. 6.4 the initial momentum of
mass 2 is now sufficient to allow mass 2 to pass through the center of the inner
mass’ circular trajectory. Snapshots indicated by light gray solid circles and solid
gray circles emphasize interesting configurations.

The situation shown in Fig. 6.6 differs from the one of Fig. 6.5 only by the initial
condition for mass 2. It is now pushed even more strongly to the right [p2.0/ D 6:5]
and this initial momentum is sufficient to cause mass 1 to rotate around the point
.0;2/. Nevertheless, mass 1 is permanently dragging behind mass 2. Two interesting
configurations are depicted by snapshots (solid light gray circles and solid gray
circles).

initial conditions:
𝜑1(0)=𝜑2(0)=0
p1(0)=0.0
p2(0)=4.0

Parameters
m=1kg, ℓ=1m
g=9.8067m/s2

∆t=0.001
N=60,000
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6.2 Numerical Solution 93

Fig. 6.5 Numerical solution of the double pendulum with initial conditions '1.0/ D '2.0/ D 0:0,
p1.0/ D 0:0 and p2.0/ D 5:0. (a) Trajectory in '-space, (b) trajectory in p-space, and (c) trajectory
in local .x; z/-space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration (The angles '2 > ! correspond to complete rotations of the pendulum)

A comparison between trajectories as a result of different initial conditions
reveals that the physical system is highly sensitive to the choice of the initial
conditions y0 D Œ'1.0/; '2.0/; p1.0/; p2.0/"T . For instance, consider Figs. 6.4, 6.5,
and 6.6. In all three cases we chose y0 in such a way that the initial angles
'1.0/ D '2.0/ D 0 and the generalized momentum coordinate p1.0/ D 0. The
only difference is that we used different values for the initial value of the second
momentum coordinate p2. However, the resulting dynamics of '1 vs. '2 as well as
p1 vs. p2 are entirely different and so are the local .x; z/-space trajectories. Hence,
the system is chaotic. In the following section we will briefly discuss a method
designed to characterize chaotic behavior of physical systems [6–10].

initial conditions:
𝜑1(0)=𝜑2(0)=0
p1(0)=0.0
p2(0)=5.0

Parameters
m=1kg, ℓ=1m
g=9.8067m/s2

∆t=0.001
N=60,000
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94 6 The Double Pendulum

Fig. 6.6 Numerical solution of the double pendulum with initial conditions '1.0/ D '2.0/ D 0:0,
p1.0/ D 0:0 and p2.0/ D 6:5. (a) Trajectory in '-space, (b) trajectory in p-space, and (c) trajectory
in configuration space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration (The angles '2 > ! correspond to complete rotations of the pendulum)

6.3 Numerical Analysis of Chaos

It is the aim of this section to analyze in more detail the chaotic behavior
observed in the dynamics of the double pendulum. This requires the introduction
of some basic notations. We consider a physical system with f degrees of freedom
where q1.t/; : : : ; qf .t/ denote the generalized coordinates and p1.t/; : : : ; pf .t/ denote
the corresponding generalized momenta. Together, both fully characterize the
state of the system at time t. Consequently, the f -dimensional vector q.t/ D
Œq1.t/; q2.t/; : : : ; qf .t/"T describes a point in configuration space of the physical
system. In case of a pendulum consisting of f point-masses connected in a
similar fashion as the double pendulum discussed above, which corresponds to the
particular case f D 2, the configuration space is constrained to values 'i 2 .!!;!",
i D 1; : : : ; f . This resembles an f -dimensional torus.

The 2f -dimensional vector x.t/ D Œq1.t/; : : : ; qf .t/; p1.t/; : : : ; pf .t/"T describes
a point in the phase space of the physical system at some particular time t. The

initial conditions:
𝜑1(0)=𝜑2(0)=0
p1(0)=0.0
p2(0)=6.5

Parameters
m=1kg, ℓ=1m
g=9.8067m/s2

∆t=0.001
N=60,000

“chaotic” behavior
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Notation:
system with f degrees of freedom at time t completely determined by:
• generalized coordinates: 
• generalized momenta:

The vector q(t)=(q1(t),…, qf(t))T is a point in configuration space.

For the double pendulum: f=2 and qi(t)=𝜑i(t)∈(-𝜋,𝜋], i=1,2

The 2f-dimensional vector x(t) )=(q1(t),…, qf(t), p1(t),…, pf(t)))T is a point in 
phase-space and the time evolution of the system is described by the phase-
space trajectory x(t).

In an autonomous (or time-invariant) system the total energy is conserved

94 6 The Double Pendulum

Fig. 6.6 Numerical solution of the double pendulum with initial conditions '1.0/ D '2.0/ D 0:0,
p1.0/ D 0:0 and p2.0/ D 6:5. (a) Trajectory in '-space, (b) trajectory in p-space, and (c) trajectory
in configuration space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration (The angles '2 > ! correspond to complete rotations of the pendulum)
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p1.0/ D 0:0 and p2.0/ D 6:5. (a) Trajectory in '-space, (b) trajectory in p-space, and (c) trajectory
in configuration space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration (The angles '2 > ! correspond to complete rotations of the pendulum)
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time evolution of a physical system is represented by its phase space trajectory. Of
course, the phase space trajectories x.t/ are differentiable with respect to t.2

We define an autonomous system as a system which is time-invariant, i.e. the
HAMILTON function H.x; t/ does not depend explicitly on time t, H.x; t/ ! H.x/.
Hence, a physical system is referred to as autonomous if the HAMILTON function
H.x; t/ of the system obeys

@

@t
H.x; t/ D 0 : (6.25)

Thus, the total energy is conserved.
An autonomous system is referred to as integrable if it has f independent

invariants I1; : : : ; If

Ij.x/ D Ij D const; j D 1; : : : ; f : (6.26)

One of these is the energy. Each particular invariant Ij reduces the dimension
of the manifold on which the phase space trajectories can propagate. Hence, an
integrable system propagates on an f -dimensional subspace of the 2f -dimensional
phase space. We note that a one-dimensional autonomous system is integrable since
the conservation of energy delivers the required invariant.

On the other hand, non-integrable systems can show chaotic behavior. In this
case the trajectories develop a strong dependence on the initial conditions which
makes an analytic calculation of the dynamics extremely difficult. However, since
the trajectories can be computed without problems by numeric means, we discuss
now how to characterize chaotic behavior on the computer.

For this sake we investigate the dynamics of an autonomous Hamiltonian system
starting with one of two initial conditions, namely x0 and x00. Then the system arrives
at time t at the phase space points x.t/ D 't.x0/ and x0.t/ D 't.x00/, respectively, as
a solution of HAMILTON’s equations of motion. Here 't.x0/ denotes the flow of the
system as defined in Sect. 5.4. Since the trajectories in a chaotic system strongly
depend on the initial conditions x0 and x00 we introduce the separation between
the two trajectories 't.x0/ and 't.x00/ at time t as d.t/ D j't.x0/ " 't.x00/j where
j # j denotes some suitable norm. This length can now, for instance, be used to
characterize the stability of the trajectory 't.x0/ [11]. In particular, a solution 't.x0/
is referred to as stable if

8! > 0 9ı.!/ > 0 W 8x00 W d.0/ < ı ) d.t/ < !; 8t > 0 : (6.27)

In words: We speak of a stable solution if the trajectory 't.x00/ which corresponds
to the perturbed initial condition x00 stays within a tube of radius ! around the

2The symplectic mapping 't W x0 7! x.t/ from the initial conditions x0 to the phase space point
x.t/ at time t is referred to as Hamiltonian flow of the system. This was discussed in Sect. 5.4.
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A system is integrable if f independent invariants I1,…, If exist (one would be the 
energy)

A 1D autonomous system is always integrable (I1=E)

Non-integrable systems can show chaotic behavior. 
• trajectories can be strongly dependence on the initial conditions 
• makes an analytic calculation of the dynamics extremely difficult.

However, since the trajectories can be computed without problems by numeric 
means, we discuss now how to characterize chaotic behavior on the computer. 
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• We analyze the system by looking at two different initial conditions x0 and x’0
• After time t, these evolved into x(t) and x’(t)
• We define the distance in phase-space d(t)=|x(t)-x’(t)| with some norm |.|.

A solution x(t) is stable if

or
A solution is stable if the trajectory x’(t),  corresponding to the perturbed initial 
condition x’0, stays within a tube of radius 𝜀 around the unperturbed trajectory 
x(t) for all t>0

• Asymptotically stable: d(t)à0 for tà∞
These solutions attract neighboring solutions: They are attractors

• A solution is a periodic orbit if x(t)=x(t+𝜏) for all x(t)
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Fig. 6.7 Schematic
illustration of the
neighborhood U0.x0/ and the
neighborhood of first return
U1.x0/ of a periodic
trajectory ! . The intersection
point x0 of ! with˙ is a
fixed point of this mapping

We utilize now these concepts and analyze the dynamics of the double pendulum.
We have four generalized coordinates which, with the help of conservation of
energy, are constrained to a three-dimensionalmanifold within the four-dimensional
phase space. Since the investigation of these three-dimensional trajectories is very
complex we consider a two-dimensional POINCARÉ section. For instance, the
coordinates Œ'1.t/; p1.t/"T can be ‘measured’ whenever '2.t/ D 0 and p2 > 0. Thus,
the system’s state is registered whenever mass 2 crosses the vertical plane from the
left-hand side.

We discuss now some of the most typical scenarios for POINCARÉ plots. (Such
a plot represents the POINCARÉ section together with all intersection points of
a particular trajectory.) Note that this discussion is, of course, not restricted to
the case of the double pendulum. Two different scenarios can be distinguished
for integrable systems: (i) the set of intersection points .#1; #2; : : : ; #N/ is finite.
(ii) In the more general case, the dimension N of the set of intersection points is
infinite. In both cases the intersection points form one-dimensional lines which
do not have to be connected. Figure 6.8a, b discuss this schematically. However,
if the system is non-integrable, a third scenario is possible: chaotic behavior. In
this case the intersection points appear to be randomly distributed on the two-
dimensional POINCARÉ section and one observes space-filling behavior. This is
illustrated schematically in Fig. 6.8c. Whether one observes chaotic behavior or not
depends on the choice of the initial conditions.

Poincaré maps
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To study non-integrable system, it is useful to use a topological method: Poincaré
maps:
• Study only intersection point of x(t) with a 2f-1 dimensional manifold 𝝨 in the 2f

-dimensional phase-space
• 𝝨 is transverse to x(t), i.e., x(t) is not parallel or within 𝝨
• For periodic or, more general, bound trajectories, x(t) has multiple intersections 

with 𝝨
• A Poincaré map is then the mapping of one intersection point to the next
For example:
• if x0∊ 𝝨 and x(t) is periodic, the next intersection 

point x1=x(𝜏)=x0.
• for a slightly perturbed x’0∈U0(x0), the trajectory will 

in general not be quite periodic and the next 
intersection point x’1≠x’0. x’1∈U1(x0)

• The map P(x’0)=x’1 is the Poincaré map. 
[above P(x0)=x0 : a fixed point]

• U0(x0) is a “neighborhood” region of x0, U1(x0) the 
neighborhood of the first return
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Two possible scenarios for integrable systems
i. number of intersection points is finite
ii. or infinite

For non-integrable systems a third case is possible:
iii. chaotic behavior: intersection points are space filling

Case of the double pendulum:
• Since E=const, the available phase-space is a three-

dimensional manifold in the (𝜑1, 𝜑2, p1, p2)-space
• define the 2D Poincare section 𝝨 as 𝜑2(t)=0 and p2>0
• intersection points form lines in 𝝨, either disconnected 

(case i) or connected (case ii)
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Fig. 6.8 Schematic illustration of the three types of POINCARÉ plots as discussed in the text. (a)
Finite number of intersection points, (b) infinite number of intersection points which, however,
form closed lines, (c) space-filling and, consequently, chaotic behavior

Fig. 6.9 POINCARÉ plot of the double pendulum with initial conditions '1.0/ D '2.0/ D 0:0,
p1.0/ D 4:0 and p2.0/ D 2:0. It corresponds to the situation discussed in Fig. 6.2

In Figs. 6.9, 6.10, and 6.11 we present POINCARÉ plots of the double pendulum.
The graphs were obtained with help of the method discussed above, i.e. '2 D 0 and
p2 > 0. Again, we set m D ` D 1 and g D 9:8067. The time step was chosen to
be !t D 0:001 and we calculated N D 36 ! 104 time steps. In Figs. 6.9 and 6.10
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corresponds to “regular” case (I)
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Fig. 6.10 POINCARÉ plot of
the double pendulum with
initial conditions
'1.0/ D 1:0; '2.0/ D 0:0,
p1.0/ D 0:0 and p2.0/ D 3:0.
It corresponds to the situation
discussed in Fig. 6.3

Fig. 6.11 POINCARÉ plot of
the double pendulum with
initial conditions
'1.0/ D '2.0/ D 0:0,
p1.0/ D 0:0 and p2.0/ D 4:0.
It corresponds to the situation
discussed in Fig. 6.4

we observe regular behavior as it was illustrated in Fig. 6.8b. In Fig. 6.11 the points
are space filling and, consequently, chaotic behavior is observed in this particular
case. Keeping in mind that this particular POINCARÉ plot refers to the initial value
problem of Fig. 6.4 we conclude that all problems of this series, i.e. Figs. 6.4, 6.5,
and 6.6, are non-integrable and chaotic.

Summary

The dynamics of the double pendulum is described by a system of four ordinary
first order differential equations. It is a typical initial value problem and, thus,
the methods introduced in Chap. 5 are all candidates to find a numerical solution.
Here we concentrated on the explicit RUNGE-KUTTA algorithm e-RK-4 of Sect. 5.3.

(II)
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(III)chaotic



Lab (today &) Thursday
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Implement RK4 for the double pendulum
Reproduce the different solutions in 𝜑1 and 𝜑2 space, 
p1 and p2 space and real space trajectories

Homework:
• Chapter 6, problems 1 - 4

For #4, derive the Hamilton equations of motion 
explicitly


