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Molecular Dynamics
Ø Classical Molecular Dynamics
Ø Numerical Implementation
Ø Boundary conditions



What is Molecular Dynamics?
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• “The science of simulating the 
motions of a system of particles” 
(Karplus & Petsko)

• Systems can be
– as small as an atom
– as large as a galaxy

• Equations of motion

• Time evolution

“everything that living things do 
can be understood in terms of the 
jigglings and wigglings of atoms.”

The Feynman Lectures in Physics vol. 1, 
3-6 (1963)



Molecular Dynamics (MD) 

A. Glatz: Computational Physics 3

• Knowledge of the interaction potential for the 
particles èforces

• Classical Newtonian equations of motion
• Many particle systems èsimulation
• Maxwell-Boltzmann averaging process for 

thermodynamic properties: time averaging

One particle

easy 
analytically

Many 
particles 
impossible 
analytically



MD simulations
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• are computer N-body simulations of physical movements of 
atoms and molecules 

• Their trajectories are determined by numerically solving the 
Newton's equations of motion for a system of interacting 
particles, where forces between the particles and potential 
energy are defined by molecular mechanics force fields. (also 
used for energy minimization in Monte Carlo simulations)

• Molecular mechanics uses classical mechanics to model 
molecular forces.

• Applications in chemical physics, materials science, and bio 
physics.

• Here only classical systems, not “quantum molecular dynamics”



All-atomistic MD simulations
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Typical MD simulation
• Each atom is simulated as a single particle and is 

affected by the potential energy functions of 
every atom in the system

• Each particle is assigned a radius (typically the 
van der Waals radius), polarizability, and a 
constant net charge (generally derived from 
quantum calculations and/or experiment)

• Bonded interactions are treated as “springs” 
with an equilibrium distance equal to the 
experimental or calculated bond length

Variations are possible (e.g., consider dimers as 
“atoms”)



Example 1
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Molecular dynamics 
simulation of the deposition 
of a single copper atom with 
a kinetic energy of 1 eV on a 
copper surface.



Example 2
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Static charges cannot drive a continuous flow of 
water molecules through a carbon nanotube



Classical Molecular Dynamics

A. Glatz: Computational Physics 8

Here we consider a classical model system for molecular dynamics consisting of 
N particles with positions ri≡ ri(t), velocities vi≡ vi(t)and masses mi, where i =1, 2, 
… , N. 
Newton’s equations of motion:

with forces:

fi are vectors of same dimension as ri & vi 
We assume conservative forces, i.e.:

Where the potential can be written as

104 7 Molecular Dynamics

7.2 Classical Molecular Dynamics

The classical model system for molecular dynamics consists of N particles with
positions ri ! ri.t/, velocities vi ! vi.t/ D Pri.t/ and masses mi, where i D
1; 2; : : : ;N. We note that ri and vi are vectors of the same dimension. We can write
NEWTON’s equations of motion as

miRri D fi.r1; r2; : : : ; rN/ ; (7.1)

where we introduced the forces fi ! fi.r1; r2; : : : ; rN/. Again, we note that the
forces fi are vectors of the same dimension as ri and vi. We specify the forces fi
by demanding them to be conservative. Thus, we write

fi.r1; r2; : : : ; rN/ D "riU.r1; r2; : : : ; rN/ ; (7.2)

where ri is the gradient pertaining to the spatial components of the i-th particle
and U.r1; r2; : : : ; rN/ is some potential which we will abbreviate by dropping its
arguments: U ! U.r1; r2; : : : rN/. We then specify this potential U as the sum of
two-particle interactions Uij and some external potential Uext as, for instance, the
gravitational field or a static electric potential applied to the system:

U D 1

2

X

i

X

j¤i

Uij C Uext : (7.3)

In our discussion of the two-body problem (Appendix A) and, in particular,
of the KEPLER problem in Chap. 4 we considered a central potential, which was
proportional to "1=r. Due to the conservation of angular momentum, it was
convenient to introduce an effective potential Ueff as the sum of an attractive and
repulsive part as it was defined in Eq. (4.3) and illustrated in Fig. 4.1. In contrast, in
molecular dynamics the most prominent two-body interaction potential is known as
the LENNARD-JONES potential [9]. It is of the form

U.jrj/ D 4!

"!
"

jrj

"12
"
!
"

jrj

"6#
; (7.4)

where " and ! are real parameters and jrj is the distance between two particles.
The significance of the parameters " and ! as well as the form of U.jrj/ defined by
Eq. (7.4) is illustrated in Fig. 7.1. The LENNARD-JONES potential was particularly
developed to model the interaction between neutral atoms or molecules. The
repulsive term, which is proportional to jrj!12, describes the PAULI repulsion while
the attractive jrj!6 term accounts for attractive VAN DER WAALS forces.

104 7 Molecular Dynamics

7.2 Classical Molecular Dynamics

The classical model system for molecular dynamics consists of N particles with
positions ri ! ri.t/, velocities vi ! vi.t/ D Pri.t/ and masses mi, where i D
1; 2; : : : ;N. We note that ri and vi are vectors of the same dimension. We can write
NEWTON’s equations of motion as

miRri D fi.r1; r2; : : : ; rN/ ; (7.1)

where we introduced the forces fi ! fi.r1; r2; : : : ; rN/. Again, we note that the
forces fi are vectors of the same dimension as ri and vi. We specify the forces fi
by demanding them to be conservative. Thus, we write

fi.r1; r2; : : : ; rN/ D "riU.r1; r2; : : : ; rN/ ; (7.2)

where ri is the gradient pertaining to the spatial components of the i-th particle
and U.r1; r2; : : : ; rN/ is some potential which we will abbreviate by dropping its
arguments: U ! U.r1; r2; : : : rN/. We then specify this potential U as the sum of
two-particle interactions Uij and some external potential Uext as, for instance, the
gravitational field or a static electric potential applied to the system:

U D 1

2

X

i

X

j¤i

Uij C Uext : (7.3)

In our discussion of the two-body problem (Appendix A) and, in particular,
of the KEPLER problem in Chap. 4 we considered a central potential, which was
proportional to "1=r. Due to the conservation of angular momentum, it was
convenient to introduce an effective potential Ueff as the sum of an attractive and
repulsive part as it was defined in Eq. (4.3) and illustrated in Fig. 4.1. In contrast, in
molecular dynamics the most prominent two-body interaction potential is known as
the LENNARD-JONES potential [9]. It is of the form

U.jrj/ D 4!

"!
"

jrj

"12
"
!
"

jrj

"6#
; (7.4)

where " and ! are real parameters and jrj is the distance between two particles.
The significance of the parameters " and ! as well as the form of U.jrj/ defined by
Eq. (7.4) is illustrated in Fig. 7.1. The LENNARD-JONES potential was particularly
developed to model the interaction between neutral atoms or molecules. The
repulsive term, which is proportional to jrj!12, describes the PAULI repulsion while
the attractive jrj!6 term accounts for attractive VAN DER WAALS forces.

104 7 Molecular Dynamics

7.2 Classical Molecular Dynamics

The classical model system for molecular dynamics consists of N particles with
positions ri ! ri.t/, velocities vi ! vi.t/ D Pri.t/ and masses mi, where i D
1; 2; : : : ;N. We note that ri and vi are vectors of the same dimension. We can write
NEWTON’s equations of motion as

miRri D fi.r1; r2; : : : ; rN/ ; (7.1)

where we introduced the forces fi ! fi.r1; r2; : : : ; rN/. Again, we note that the
forces fi are vectors of the same dimension as ri and vi. We specify the forces fi
by demanding them to be conservative. Thus, we write

fi.r1; r2; : : : ; rN/ D "riU.r1; r2; : : : ; rN/ ; (7.2)

where ri is the gradient pertaining to the spatial components of the i-th particle
and U.r1; r2; : : : ; rN/ is some potential which we will abbreviate by dropping its
arguments: U ! U.r1; r2; : : : rN/. We then specify this potential U as the sum of
two-particle interactions Uij and some external potential Uext as, for instance, the
gravitational field or a static electric potential applied to the system:

U D 1

2

X

i

X

j¤i

Uij C Uext : (7.3)

In our discussion of the two-body problem (Appendix A) and, in particular,
of the KEPLER problem in Chap. 4 we considered a central potential, which was
proportional to "1=r. Due to the conservation of angular momentum, it was
convenient to introduce an effective potential Ueff as the sum of an attractive and
repulsive part as it was defined in Eq. (4.3) and illustrated in Fig. 4.1. In contrast, in
molecular dynamics the most prominent two-body interaction potential is known as
the LENNARD-JONES potential [9]. It is of the form

U.jrj/ D 4!

"!
"

jrj

"12
"
!
"

jrj

"6#
; (7.4)

where " and ! are real parameters and jrj is the distance between two particles.
The significance of the parameters " and ! as well as the form of U.jrj/ defined by
Eq. (7.4) is illustrated in Fig. 7.1. The LENNARD-JONES potential was particularly
developed to model the interaction between neutral atoms or molecules. The
repulsive term, which is proportional to jrj!12, describes the PAULI repulsion while
the attractive jrj!6 term accounts for attractive VAN DER WAALS forces.

104 7 Molecular Dynamics

7.2 Classical Molecular Dynamics

The classical model system for molecular dynamics consists of N particles with
positions ri ! ri.t/, velocities vi ! vi.t/ D Pri.t/ and masses mi, where i D
1; 2; : : : ;N. We note that ri and vi are vectors of the same dimension. We can write
NEWTON’s equations of motion as

miRri D fi.r1; r2; : : : ; rN/ ; (7.1)

where we introduced the forces fi ! fi.r1; r2; : : : ; rN/. Again, we note that the
forces fi are vectors of the same dimension as ri and vi. We specify the forces fi
by demanding them to be conservative. Thus, we write

fi.r1; r2; : : : ; rN/ D "riU.r1; r2; : : : ; rN/ ; (7.2)

where ri is the gradient pertaining to the spatial components of the i-th particle
and U.r1; r2; : : : ; rN/ is some potential which we will abbreviate by dropping its
arguments: U ! U.r1; r2; : : : rN/. We then specify this potential U as the sum of
two-particle interactions Uij and some external potential Uext as, for instance, the
gravitational field or a static electric potential applied to the system:

U D 1

2

X

i

X

j¤i

Uij C Uext : (7.3)

In our discussion of the two-body problem (Appendix A) and, in particular,
of the KEPLER problem in Chap. 4 we considered a central potential, which was
proportional to "1=r. Due to the conservation of angular momentum, it was
convenient to introduce an effective potential Ueff as the sum of an attractive and
repulsive part as it was defined in Eq. (4.3) and illustrated in Fig. 4.1. In contrast, in
molecular dynamics the most prominent two-body interaction potential is known as
the LENNARD-JONES potential [9]. It is of the form

U.jrj/ D 4!

"!
"

jrj

"12
"
!
"

jrj

"6#
; (7.4)

where " and ! are real parameters and jrj is the distance between two particles.
The significance of the parameters " and ! as well as the form of U.jrj/ defined by
Eq. (7.4) is illustrated in Fig. 7.1. The LENNARD-JONES potential was particularly
developed to model the interaction between neutral atoms or molecules. The
repulsive term, which is proportional to jrj!12, describes the PAULI repulsion while
the attractive jrj!6 term accounts for attractive VAN DER WAALS forces.



Potentials
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For the two-body Kepler problem we used the central potential: ∝ -1/r
Most common the Lennard-Jones potential

where 𝜎 and 𝜖 are real parameters:

developed to model the interaction 
between neutral atoms or molecules 
• |r|-12 describes Pauli repulsion
• -|r|-6 van-der-Waals attraction
Distance between particles:

à two-body potential:
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Fig. 7.1 Illustration of the
LENNARD-JONES potential,
Eq. (7.4). ! describes the
depth of the potential well
and " is the position of the
root of the LENNARD-JONES
potential

We introduce the distance between particles i and j via

rij D jri ! rjj D jrj ! rij D rji ; (7.5)

and define the two-body potential

Uij " U.rij/ ; (7.6)

where U is approximated by the LENNARD-JONES potential (7.4). Furthermore, we
deduce from Eq. (7.4) that

f .jrj/ D !rrU.jrj/ D
24!

jrj2

"
2

!
"

jrj

"12
!
!
"

jrj

"6#
r ; (7.7)

where we keep in mind that r is a vector. Hence, we write the forces fi which appear
in NEWTON’s equations of motion (7.1) with the help of (7.3) in the form

fi D !riU

D !ri

0

@1
2

X

k

X

l¤k

Ukl CUext

1

A

D !
X

j¤i

riUij ! riUext

D
X

j¤i

f .rij/C f iext

D
X

j¤i

fij C f iext ; (7.8)
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Forces
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This results in the force:

In general, we can write the forces in the Newton equation:
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Rewrite
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We introduce:

Which results in the Newton equation in form:

Or in the coupled first order equations:
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where we implicitly defined the external force f iext acting on particle i and the two-
particle forces fij acting between particle i and j. We want to make the road visible,
which guides us to a numerical solution of NEWTON’s equations of motion (7.1),
and introduce the vectors R D .r1; r2; : : : ; rN/T , V D .v1; v2; : : : ; vN/

T D PR, and
F D . f1=m1; f2=m2; : : : ; fN=mN/

T . This transforms Eq. (7.1) into the very compact
form

RR D F ; (7.9)

which is equivalent to a set of two first order ordinary differential equations:

! PR
PV

"
D
!
V
F

"
: (7.10)

This set is already of the standard form (5.1) of initial value problems.
We are now in a position to proceedwith a discussion of some numericalmethods

which have been developed in Chap. 5 to solve this initial value problem. For this
sake, we regard discrete time instances tk D k!t, where k 2 N and function values
at these discrete time instances tk are denoted by a subscript k, as for instance Rk !
R.tk/.

(i) In a first approximation we apply the symplectic EULER method [see
Eq. (4.33)] to Eq. (7.10) and obtain

!
RkC1
VkC1

"
D
!
Rk

Vk

"
C
!
VkC1
Fk

"
!t : (7.11)

Inserting the second into the first equation results in

RkC1 D Rk C Vk!tC Fk!t2 : (7.12)

The velocity Vk at time tk is then approximated by the backward difference
derivative (2.10b) and we find the recursion relation:

RkC1 D 2Rk " Rk!1 C Fk!t2 : (7.13)

We note that it is only valid for k # 1. The initialization step necessary to
complete the analysis is found by expanding R1 in a TAYLOR series up to
second order:

R1 D R0 C!tV0 C
1

2
F0!t2 : (7.14)

This method is referred to as the STÖRMER-VERLET algorithm [10]. Note
that Eq. (7.14) serves as the initialization of the sequence of time steps.
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This method is referred to as the STÖRMER-VERLET algorithm [10]. Note
that Eq. (7.14) serves as the initialization of the sequence of time steps.
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As usual, we discretize time as tk=k∆t, k∈ℕ, and use the subscript k to indicate a 
dependence on tk, e.g. Rk=R(tk)
à symplectic Euler

which combines to

Using the backward difference for Vk gives the recursion

valid for k>1. for k=1 we use the Taylor expansion

 this is the Störmer-Verlet algorithm
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Furthermore, we remark that Eq. (7.13) could have also been obtained using
the central difference derivative to approximate the second time derivative in
Eq. (7.1):

RRk ! RkC1 " 2Rk C Rk!1
!t2

D Fk : (7.15)

In summary, the VERLET or STÖRMER-VERLET algorithm is defined by the
following set of equations:

RkC1 D 2Rk " Rk!1 C Fk!t2 ; k # 1;

R1 D R0 C!tV0 C
1

2
F0!t2 : (7.16)

(ii) We employ the central rectangular rule of integration (Sect. 3.2) in order
to obtain approximations which are formally equivalent to Eq. (5.11). In
particular, we obtain from Eq. (7.10):

RkC1 D Rk C VkC 1
2
!t : (7.17)

We note that the value of VkC1=2 is yet undetermined. However, it can be
determined in a similar fashion via

VkC 1
2
D Vk! 1

2
C Fk!t : (7.18)

This method is referred to as the leap-frog algorithm and is initialized by the
relation

V 1
2
D V0 C

!t
2
F0 : (7.19)

This equation can also be obtained by expanding V1=2 in a TAYLOR series up
to first order around the point t0 D 0 and by noting that PVk D Fk. In summary
we write the leap-frog algorithm as

RkC1 D Rk C VkC 1
2
!t ;

VkC 1
2
D Vk! 1

2
C Fk!t ;

V 1
2
D V0 C

1

2
F0!t : (7.20)

follows also from central difference
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using the central rectangular rule gives:

and similarity we define

This is the leap-frog algorithm together with the initialization (obtained by Taylor 
series)
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We expand:

and 

where the remainder is approximated by the geometric mean at time tk and 
tk+1

I.e.: First calculate Rk+1, then using this Fk+1, and finally Vk+1

Remarks:
i. Symplectic Euler is time-reversal symmetric ∆t→-∆t, position updates are 

highly accurate, but velocity updates not
ii. The latter is improved by leap-frog and velocity Verlet. Both are not time-

reversal invariant.
iii. velocity Verlet is most popular

108 7 Molecular Dynamics

(iii) A third, very elegant alternative is the so-called velocity VERLET algorithm.
We expand RkC1:

RkC1 D Rk C Vk!tC
1

2
Fk!t2 : (7.21)

This allows to calculate the spatial coordinates at time tkC1 if Rk and Vk are
given. Note that Fk ! F.Rk/ is completely determined by the positions Rk.
Nevertheless, we need one more relation in order to determine the velocities
at times tkC1. Again, we expand VkC1 in a TAYLOR series. However, we
approximate the remainder by the arithmetic mean between tk and tkC1:

VkC1 D Vk C
1

2
.Fk C FkC1/!t : (7.22)

The strategy is clear: we calculate the positions RkC1 from Eq. (7.21) for given
values of Rk and Vk. With the help of RkC1 we compute FkC1, which is then
inserted into Eq. (7.22) which determines VkC1. In summary, the complete
algorithm of the velocity VERLET method is defined by the steps:

RkC1 D Rk C Vk!tC
1

2
Fk!t2 ;

VkC1 D Vk C
1

2
.Fk C FkC1/!t : (7.23)

We note some properties of these methods. The STÖRMER-VERLET algorithm
of Eq. (7.16) is time-reversal symmetric (invariant under the transformation !t !
"!t), hence reversible. This is a direct consequence of its relation to the symplectic
EULER method. Moreover, the positions Rk obtained with this method are highly
accurate, however, the procedure suffers under an inaccurate approximation of the
velocitiesVk. This shortcoming is clearly remedied by the leap-frog algorithm (7.20)
or the velocity VERLET algorithm (7.23). However, these methods are not time-
reversal invariant. Hence, one has to decide whether or not very accurate values
for the velocities are required for the problem at hand. In many cases the velocity
VERLET algorithm is the most popular choice.

7.3 Numerical Implementation

The rough structure of a molecular dynamics code consists of three crucial steps,
namely

• Initialization,
• start simulation and equilibrate,
• continue simulation and store results.
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Typical structure of a molecular dynamics code has three crucial 
steps:
• Initialization, 
• start simulation and equilibrate, 
• continue simulation and store results. 

Important are appropriate boundary conditions
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7.3 Numerical Implementation 109

In the following we discuss some of the most important subtleties associated with
these three parts. In particular we will focus on the choice of appropriate boundary
conditions and on the choice of the scales of characteristic quantities.

Boundary Conditions

Basically, there are two possibilities: (i) The system is of finite size and the
implementation of boundary conditions might be straightforward. For instance, let
us assume that we regard N particles within a finite box of reflecting boundaries,
we simply propagate the particle-coordinates in time and if a particle tries to leave
the box, we correct its trajectory according to a reflection law. The velocity is
adjusted accordingly. This is illustrated in Fig. 7.2 for a two-dimensional case and
the particular situation that the particle is reflected from the right hand boundary of
the box. The corresponding equations read

rkC1 D
!
xkC1
ykC1

"
D
!
L ! .QxkC1 ! L/

QykC1

"
; (7.24)

and

vkC1 D
!
vkC1;x
vkC1;y

"
D
!

! QvkC1;x
QvkC1;y

"
: (7.25)

Fig. 7.2 Illustration of the
reflection principle for a box
of finite dimension with
reflecting boundaries
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Two possibilities:
(i) finite system, implementation of boundary conditions might be 
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Here, L denotes the length of the box and QxkC1, QykC1, QvkC1;x and QvkC1;y are the
positions and velocities one would have obtained in the absence of the boundary,
see Fig. 7.2.

(ii) The system is not confined. Then the situation is entirely different. Of course,
one could approximate the infinite volume by a large but finite volume. In such a
case the influence of a constraint to finite size is usually not negligible. The induced
errors are referred to as finite volume effects. A very popular choice are so called
periodic boundary conditions which means that a finite system is surrounded by an
infinite number of completely identical replicas of the system, where the forces
are allowed to act across the boundaries. Because of this, calculating the force
on one particle requires the evaluation of an infinite sum. This is numerically not
manageable and we have to find ways to truncate the sum. For instance, it might
be a good approximation to restrict the sum to nearest-neighbor cells. However, the
applicability of such an approach highly depends on the properties of the system
under investigation and, in particular, on the range of the interaction potential.
In case of a LENNARD-JONES potential the quantity defining the range of the
interaction potential is !, see Fig. 7.1.

If a particle leaves the box, it enters the box at the same time on the opposite
side. More generally, due to the requirement of identical replicas, we have for all
observables O.r/ that O.r C nK/ D O.r/, where r lies within the central box, K is
a lattice vector pointing to one of the neighboring cells and n 2 Z.

There is another crucial point concerning periodic boundary conditions. In case
of a closed system, the system is definitely at rest. However, if periodic boundary
conditions are imposed it is possible that the particles move with constant velocity
from one cell to another, which, in our case, resembles circling trajectories. This is
definitely not desirable since the total velocity is a measure of the kinetic energy
and, therefore, of the temperature of the system. However, one can shift the total
velocity in order to remedy this problem. In particular, if

vtot D
NX

iD1
vi ¤ 0 ; (7.26)

the shift

v0i D vi ! 1

N
vtot ; (7.27)

yields the desired result. We note that in a case where all masses are identical, i.e.
m1 D m2 D : : : D mN " m, this is equivalent to ptot D mvtot D 0.

In conclusion, we remark that the choice of boundary conditions is not the only
item to be considered in the definition of the system. Another quite crucial point
might be the size of the box. If an infinite system is modeled using finite systems,
the dimension of the box must fairly exceed the mean free path of the particles.
Otherwise, the influence of the boundaries is going to perturb significantly the
outcome of the numerical experiment.
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(ii) The system is not confined. This situation is entirely different.
• could be approximated by finite, but large system à finite volume effects
• use periodic boundary conditions: If a particle leaves the box, it enters the 

box at the same time on the opposite side. This means that a finite system is 
surrounded by an infinite number of completely identical replicas of the 
system, where the forces are allowed to act across boundaries à calculating 
the force on one particle requires the evaluation of an infinite sum. 
Numerically not manageable and we have to find ways to truncate the sum, 
e.g., only nearest neighbor cells, but depends on the range of interaction 
forces.

If total velocity is non-zero
(adds to kinetic energy)

one can introduce a shift:
(so the system is at rest, as it 
should be for closed systems)
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The equipartition theorem states that every degree of freedom contributes 
kBT/2 to the total kinetic energy. E.g. for N particles in d dimensions we have 
d(N-1) degrees of freedom if the total velocity is zero (closed system):

which we can use to define the temperature of a system:

Often T is an input parameter, not an observable. This means we should 
rescale the velocities to get the correct temperature (might need to be done 
several times to get a constant temperature; does not change the total 
velocity):

7.3 Numerical Implementation 111

Initialization and Equilibration

We remember from statistical physics [1–4] that every degree of freedom in the
system (7.1) contributes just kBT=2 to the total kinetic energy because of the
equipartition theorem. Here kB is BOLTZMANN’s constant and T is the temperature.
If we regard N particles, which move in a d-dimensional space, we have d.N ! 1/
degrees of freedom, if we demand that vtot D 0. Hence, we have

Ekin D
1

2

NX

iD1
miv

2
i D d.N ! 1/

2
kBT ; (7.28)

which gives a relation from which we can determine the temperature of the system:

kBT D 1

d.N ! 1/

NX

iD1
miv

2
i : (7.29)

However, in many applications the system is supposed to be simulated at a given
temperature, i.e. the temperature T is an input rather than an output parameter and
is supposed to stay constant during the simulation. We can control the temperature
by rescaling the velocities and this might be necessary at several times during the
simulation in order to guarantee a constant temperature. We define

v0i D !vi ; (7.30)

where ! is a rescaling parameter. The temperature associated with the velocities v0i
is given by

kBT 0 D !2

d.N ! 1/

NX

iD1
miv

2
i : (7.31)

This allows to determine how to choose ! in order to obtain a certain temperature
T 0:

! D
s

d.N ! 1/kBT 0

2Ekin
: (7.32)

We note that if the total velocity, which is the sum of all velocities vi, is zero, the
total velocity corresponding to the rescaled velocities v0i is also equal to zero since

NX

iD1
v0i D !

NX

iD1
vi D 0 : (7.33)
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The “rescaled” temperature is then

which we can use to define the rescaling parameter 𝜆:

The choice of initial conditions influence the equilibration behavior. If a 
temperature is defined, initial velocities should be chosen according to the 
Maxwell-Boltzmann distribution, i.e., with velocities distributed according to pdf
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This ensures that rescaling of the velocities does not induce a bias.
The choice of the initial conditions highly influences the time the system needs

to reach thermal equilibrium. For instance, if a gas is to be simulated at a given
temperature T it might be advantageous to choose the initial velocities according to
a MAXWELL-BOLTZMANN distribution. The MAXWELL-BOLTZMANN distribution
states that the probability [more precisely: the pdf (probability density function
describing the probability, see Appendix E)] that a particle with massm has velocity
v is proportional to

p.jvj/ / jvj2 exp
!

!mjvj2
2kBT

"
: (7.34)

Another intriguing question is how to check whether or not thermal equilibrium
has been reached. In statistical mechanics one is usually confrontedwith expectation
values of observables O.t/ as a function of time. The expectation value hOi is
defined as

hOi D lim
!!1

1

!

Z !

0

dtO.t/ : (7.35)

Since O.t/ is not known analytically one replaces the mean value by its arithmetic
mean

hOi " O D 1

n

kCnX

jDkC1
O.tj/ : (7.36)

If n and k are sufficiently large, the average value can be regarded as converged.
In particular, one has to choose n reasonably large and then find k in such a way,
that for all values k0 # k the same result for O is obtained. Hence, equilibrium has
been reached after k time-steps and it is now possible to ‘measure’ the observables
by calculating their mean values. A more detailed discussion of such a procedure,
as, for instance, the influence of time correlations or a discussion of more advanced
techniques is postponed to Chap. 19.

There is one last point: In many cases the natural units of the physical system
might be disadvantageous because they are likely to induce numerical instabilities.
In such cases a common technique is to switch to rescaled variables by introducing
new units, which are characteristic quantities for the system and all physical
quantities are expressed in these new units. For instance one might introduce the
length L of the box as the unit of space. The new spatial coordinates would then be
given by

r0 D r
L
: (7.37)

(read appendix E on pdfs)
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Question: How do we check if we reached thermal equilibrium?

In statistical mechanics one typically has time-dependent observables O(t). Its 
expectation value is defined as:

Since we do not know O(t) analytically and cannot wait indefinitely, we use

If n and k are sufficiently large, we can assume that this average has converged. 
This means we need to find the k for which <O> does not change anymore for 
k’>k (for sufficiently large n).
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As mentioned before it is often useful to use rescaled, dimensionless units 
instead of natural units to avoid numerical instabilities. E.g.

which would result in positions being in the interval [0; 1].
One has to be careful that not all units can be rescaled independently.
(e.g. the energy scale and time scale are related)
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length L of the box as the unit of space. The new spatial coordinates would then be
given by

r0 D r
L
: (7.37)
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114 7 Molecular Dynamics

Fig. 7.3 (a) Initial configuration: the particles are placed in a 10!10 equally spaced lattice starting
with x D 10:5 and y D 10:0; g D 9:81. The initial velocities are equal to zero. (b) Configuration
after 1200 time steps. (c) Configuration after 1800 time steps. (d) Configuration after 3000 time
steps

velocities. It has the advantage that it is time reversible. The other two methods
lack this property but give very accurate estimates of the particles’ velocities. The
final part of this chapter was dedicated to the discussion of various subtleties of
the numerical implementation of these algorithms as there were: (i) definition of
boundary conditions, (ii) initialization of the algorithm, (iii) equilibration to a given
temperature, (iv) ensuring constant temperature throughout the simulation, and (v)
transformation to rescaled variables.

Problems

1. We investigate the pendulum of Chap. 1 and write its equation of motion as

RxC !2x D 0 ;

with ! D
p
g=`. The STÖRMER-VERLET algorithm is applied to simulate the

pendulum’s motion and to compare the numerical results with the exact solution.
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Implement the molecular dynamics of N particles in a 
box:
• N=100, L=30
• Initially arranged in square (lower left corner at 

(10.5,10) and lattice spacing 1)
• gravity acts on each particle
• particles interact by Lennard-Jones (LJ) potential

use leap-frog or velocity Verlet algorithms

Parameters: 𝜎=𝜖=1, m=1, g=9.81, ∆t=10-3, Nt=5000
(requires ~3⋅107 LJ potential calculations)


