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What is Molecular Dynamics?

* “The science of simulating the
motions of a system of particles”
(Karplus & Petsko)

e Systems can be

— as small as an atom
— as large as a galaxy

e Equations of motion

. “everything that living things do
can be understood in terms of the
jigglings and wigglings of atoms.”

The Feynman Lectures in Physics vol. 1,
3-6 (1963)

* Time evolution

A. Glatz: Computational Physics



Molecular Dynamics (MD)

Knowledge of the interaction potential for the
particles =»forces
particles

One particle

O impossible
€asy analytically
analytically

Classical Newtonian equations of motion

Many

Many particle systems =2 simulation

Maxwell-Boltzmann averaging process for
thermodynamic properties: time averaging



MD simulations

are computer N-body simulations of physical movements of
atoms and molecules

Their trajectories are determined by numerically solving the
Newton's equations of motion for a system of interacting
particles, where forces between the particles and potential
energy are defined by molecular mechanics force fields. (also
used for energy minimization in Monte Carlo simulations)
Molecular mechanics uses classical mechanics to model
molecular forces.

Applications in chemical physics, materials science, and bio
physics.

Here only classical systems, not “guantum molecular dynamics”



All-atomistic MD simulations

Typical MD simulation

* Each atom is simulated as a single particle and is
affected by the potential energy functions of
every atom in the system A

e Each particle is assigned a radius (typically the
van der Waals radius), polarizability, and a
constant net charge (generally derived from
quantum calculations and/or experiment) B

* Bonded interactions are treated as “springs”
with an equilibrium distance equal to the
experimental or calculated bond length

Vlariations are possible (e.qg., consider dimers as

“atoms”)




Example 1

Molecular dynamics
simulation of the deposition
of a single copper atom with
a kinetic energy of 1 eV on a
copper surface.

A. Glatz: Computational Physics

time 0.0041 ps




Example 2
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Static charges cannot drive a continuous flow of
water molecules through a carbon nanotube

A. Glatz: Computational Physics



Classical Molecular Dynamics

Here we consider a classical model system for molecular dynamics consisting of
N particles with positions r=r,(t), velocities vi= vi(t)and masses m,, where i =1, 2,
..., N.

Newton’s equations of motion:

m;i; = fi(ri,r2, ..., )
with forces: f; = fi(r1,ra, ..., 1ry)

f, are vectors of same dimension asr; & v,
We assume conservative forces, i.e.:

fi(ri,ra,....,ry) = =V, U(r,ra,...,7n)

Where the potential can be written as

U=%ZZUij+Uex1

i i



Potentials

For the two-body Kepler problem we used the central potential: «< -1/r
Most common the Lennard-Jones potential

€ 12 € 6
Ulin) = 40 (m) ‘(m)

where o and € are real parameters:

developed to model the interaction 05 -
between neutral atoms or molecules 00 |
* |r|*% describes Pauli repulsion Sl
 -|r|®van-der-Waals attraction
Distance between particles:

Fij = |I"i — I’j| — |I’j — I",'l = Tiji

0.08 0.10 0.12 0.14 0.16 0.18 0.20

- two-body potential: U,'j = U(”ij) |



Forces

24
This results in the force:  f(|r]) = =V, U(|r]) = ﬁ |:2(
r

In general, we can write the forces in the Newton equation:

fi=—-ViU

= —V; (% Z Z Ui + Uext

ko Ik

= — Z ViUjj — V;Ucx
#
— Zf(rlj) +feixt
JFi

— Zflj "l'fcixt ’
JFi

€

7]

|

) -



Rewrite

_ T
We introduce: R = (_’”la’”Z’---a’”N) V= (v, 02,..

.,UN)T =R

F = (fi/mi,fo/ma, ... .[n/my)"

Which results in the Newton equation in form: M

Or in the coupled first order equations: R 14

A. Glatz: Computational Physics
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Discretization

As usual, we discretize time as t,=kAt, k€N, and use the subscript k to indicate a
dependence on t,, e.g. R,=R(t,)

- symplectic Euler
( : 1) ( k) ( : 1) t
Vit+1 Vi Fy

Ri+1 = R + Vi At + FkAl‘z

which combines to

Using the backward difference for V| gives the recursion

Rﬁi = 2Ri - Ri_i + FiAtz

valid for k>1. for k=1 we use the Taylor expansion

1
Ri — Rﬂ + AtVﬂ + —FﬂAtz

this is the Stérmer-Verlet algorithm follows also from central difference

. Ryi1 — 2R, + Ri—
Ry~ k+1 kT klek

A. Glatz: Computational Physics Atz 12




Leap-frog method

using the central rectangular rule gives: Riy1 =R+ V, 1 At

and similarity we define

This is the leap-frog algorithm together with the initialization (obtained by Taylor

series)

A. Glatz: Computational Physics
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velocity Verlet algorithm

|
We expand: Riy1 = Ry + Vi At + EFkAt2

" R AL

where the remainder is approximated by the geometric mean at time t, and

tk+1

l.e.: First calculate Ry, 4, then using this F,,,, and finally V,,,

Remarks:

i.  Symplectic Euler is time-reversal symmetric At—>-At, position updates are
highly accurate, but velocity updates not

ii. The latter is improved by leap-frog and velocity Verlet. Both are not time-
reversal invariant.

iii. velocity Verlet is most popular

A. Glatz: Computational Physics 14



Numerical Implementation

Typical structure of a molecular dynamics code has three crucial
steps:

* Initialization,

e start simulation and equilibrate,

* continue simulation and store results.

Important are appropriate boundary conditions

A. Glatz: Computational Physics
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Boundary conditions

Two possibilities:

(i) finite system, implementation of boundary conditions might be
straightforward. E.g. N particles within a finite box of reflecting
boundaries: simply propagate particle-coordinates in time and if a particle

tries to leave the box, correct its trajectory according to a reflection law.
The velocity is adjusted accordingly. AY

Example:
oy = (Xk+1) _ (L— (Xk+1 —L))
Yi+1 Yk+1 CHPRN SO
S (Uk—H,x) _ (—5k+1,x)
Uk+1.y 5k+1,y

where L is the size of the box

~ ~ ~ ~ (X 1Y)
Xi+1> Yk+1s Vk+1x and Ug4q,

would be the coordinates/velocities in
absence of border




(ii) The system is not confined. This situation is entirely different.

* could be approximated by finite, but large system 2> finite volume effects

e use periodic boundary conditions: If a particle leaves the box, it enters the
box at the same time on the opposite side. This means that a finite system is
surrounded by an infinite number of completely identical replicas of the
system, where the forces are allowed to act across boundaries = calculating
the force on one particle requires the evaluation of an infinite sum.
Numerically not manageable and we have to find ways to truncate the sum,
e.g., only nearest neighbor cells, but depends on the range of interaction

forces. o Olo Ol O

O O O

If total velocity is non-zero N o | Oo | OO
(adds to kinetic energy) Vtot = Z vi#0  m Ol O O

i=1 O O

O O O

one can introduce a shift: WA lv OO0 |QO | OO
(so the system is at rest, asit N o O o Olo O

O O O

should be for closed systems)




Initialization and Equilibration

The equipartition theorem states that every degree of freedom contributes
kgT/2 to the total kinetic energy. E.g. for N particles in d dimensions we have
d(N-1) degrees of freedom if the total velocity is zero (closed system):

d(N — 1
Ekln— Zmz — ( ) BT

which we can use to define the temperature of a system:
N

1
kT = 02
B d(N—l)va’

=

Often T is an input parameter, not an observable. This means we should
rescale the velocities to get the correct temperature (might need to be done
several times to get a constant temperature; does not change the total

velocity): vl{ — v,



The “rescaled” temperature is then
2 N

ke T = 2
B d(N—l)va’

i=1

which we can use to define the rescaling parameter A:

d(N — kT’
2Ekin

A=

The choice of initial conditions influence the equilibration behavior. If a
temperature is defined, initial velocities should be chosen according to the
Maxwell-Boltzmann distribution, i.e., with velocities distributed according to pdf

2 _m|v|2
pol o foPexp (<2 )

(read appendix E on pdfs)



Question: How do we check if we reached thermal equilibrium?

In statistical mechanics one typically has time-dependent observables O(t). Its

expectation value is defined as: 1 [°
(O) = lim — / drO(?)
=00 T J
Since we do not know O(t) analytically and cannot wait indefinitely, we use
1 k+n
(0)~ 0=~ Y o)
j=k+1

If n and k are sufficiently large, we can assume that this average has converged.

This means we need to find the k for which <O> does not change anymore for
k’>k (for sufficiently large n).

A. Glatz: Computational Physics
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Units

As mentioned before it is often useful to use rescaled, dimensionless units
instead of natural units to avoid numerical instabilities. E.g.

which would result in positions being in the interval [0; 1].
One has to be careful that not all units can be rescaled independently.
(e.g. the energy scale and time scale are related)

A. Glatz: Computational Physics
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Example
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Lab today & Thursday

Implement the molecular dynamics of N particles in a

box:

e N=100, L=30

* |Initially arranged in square (lower left corner at
(10.5,10) and lattice spacing 1)

e gravity acts on each particle

e particles interact by Lennard-Jones (LJ) potential

use leap-frog or velocity Verlet algorithms

Parameters: 0=€=1, m=1, g=9.81, At=10-3, N,.=5000
(requires ~3:10’ LJ potential calculations)




