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Boundary Value Problems

A linear boundary value problem (of order n) can be defined as

Lly] = f(x), x € |a, b],
Ul =A, v=1,....n.

with the linear operator L[y]

n

Ll =Y a(x)y® (x)

k=0
f(x) and a,(x) are continuous, given functions; y*/(x) are the k" spatial derivates
Boundary conditions (BC) are therefore defined as (constants a,,, S, 4, are given)

n—1

U, [y] — Z [avky(k)(a) + ﬁvky(k)(b)] = Av

k=0
Example forn=2:  y(@)=a,  y(b)=pB  Dirichlet BC
yi(a) =a, y(b) =B von-Neumann BC

Discretization (using central differences) results then in a linear equation system for
the y,, which one needs to solve, e.g. Gaussian elimination,
Read chapter 8 & Appendix C



The homogeneous heat equation

Here we consider a rod of length L, which is kept at temperatures T, and Ty at

its ends
T, T

‘- L -
B >

The temperature profile in this rod as a function of time is T(x,t). The heat
equation is then defined as

0
—T(x,t) = kAT (x,t

which is a linear partial differential equation. The operator A is the Laplace
operator, given by A=V?=9,°+ 9,2+ 9,7 in 3D. k is the thermal diffusivity.
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The heat equation is typically solved together with initial and boundary value
conditions. It is equivalent to solving the diffusion equation:

= p(c.1) = DAp(x. 1

where p(x,t) is the (particle) density and D the diffusion constant.
Here we concentrate on the 1D case and assume that a steady-state has been
reached when 0,T(x,t)=0. Therefore, we get the boundary value problem:

( d2
@T(X) = 0, X € [O,L]

) =To,
T(L) = Ty .




which has the (obvious) analytical solution:

T(x) =To+ (Tn — To) %
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Finite Differences

We discretize the interval [0; L] in N equal length, h, subintervals using N+1
grid points: x,=nh, h=L/N, x,=0, x\=L, T.,=T(x,)
Tn-l—l — 2Tn + 1,
2
= Tn-|-1 —2T,+T,-1 =0

The boundary conditions are defined by T, and Ty
This linear equation system for the T,,..., T\_; are then written in the form

=0

A-T=F
with T=(T,..., Ty.1)7
with and
21 0 ... 0 —To
1—210...0\ /0\
A=|0 1 =21 F=1 :
\o ... oy \~7/




This is easily solved: T, = 2T,, — T,—1, n=1,....N—1

ie. I, = 2T, —To ,
Ty = 2T, — T ,
— 3T, — 2T
Ty =21T5—-T,,
— 4T, — 3T,
in general: T, =nT), — (n— 1T,

which is quickly proven by induction:
Tyt = 2T, — Ty
=2[nT) — (n— 1)To] — [(n— 1)T1 — (n — 2)Ty]
=+ 1)T, —nT, .



Since Ty is kept constant, we caninfer T;: 7y, = NT; — NT, + T,

Ty — Ty

T, =
: N

+ Ty
and finally: T,=To+ (Ty — To)%

nh
=To+ (Ty — To)f

which is just the discretized version of the analytic solution. l.e. the solution is
exact, which is not surprising as finite derivatives are exact for linear functions.



Inhomogeneous heat equation

We consider now: 0
_T(x, t) — KAT(X, t) - F(X, t) Here I'(x,t)=I"(x)

in particular the 1D stationary case: d? 1
—Tx) = -TI(x)
dx? K

Next, we consider the special case of

? [_ (x 2;)2}

I'(x) = —exp

i.e. a Gaussian peak in the middle of the system of width £ and height &

Physically this means the rod is locally heated or cooled in the center.

for £-0 this function becomes: L

lim I (x) < ®§ (x— —)
{—0 2
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The rhs of the linear equation system is then changed to:

1™y
|

everything else is unchanged.

((Ni—To
I3

I'n—>

\Tv-1 = 727w )

I" (xy)



numerical solutions

For L=10, k=1, 0=-0.4, £=1, T,=0, T\=2.0

25 0.0
; /\
2.0 ol -0.1
I / ______ N=5
15 -0.2
x - X
= 1.0 T(X) 03 =
- T
05 -0.4
0.0 ' ' ' -0.5
0 2 4 6 8 10
X
3.0 = == 0.0
\ /
- \ /
25 \\ 7\
\
2.0 \ 0.2
yan N=10
< 15 \ =
= | Vo ——T(x) =
1.0 / v -0.4
- ---- T(x
o5 (x)
0.0 ' -0.6
0 2 4 6 8 10
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Gaussian Elimination:

form Ux=bh

1. Introduce the multipliers:

2. Eliminate the unknown x; in

m (1 1
x

> 0 (9o
0 a4y
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the following rows i below row 1:

)
o

2)

ann

o
11 — (1)
a§1)

(2) _ (1)

B =V —m

U: upper triangular matrix, b: updated right side vector.
* The latter system can then be solved by backward substitution
* Let us denote the original system by Al)x = b(1)

— MGy,

Gaussian elimination (GE)

* Reduce Ax=b to an equivalent system (that is, having the same solution) of

1=2,3,...,n
Wi i=2... n,
ilbgl), ’1,22, , N,
" |
ey
2
. & Alx = b2
b

12



Then eliminate x, from rows 3,...,n, etc.

In general after k-1 elimination steps, we have a system:

R B
0 i o)
A(k) _ . .. :
0 - 0 a,(clz) - ag;)
| 0 - 0 afﬁg - aS{i} ]
And finally, we get: 1) () 1 7 - i
yl g 0,11 a%22) G%SL) a’,’l
0 asy L2

0

We assumed al).=0 (i=1,...

A. Glatz: Computational Physics

n
agm) B Ly _

AFx =pk) 1 <k <n,

- () (1) (1) 7

S Ux=b

b

,n-1). These elements are called pivots.

O(n3) algorithm
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Triangular matrices: forward &
backward substitution

Consider the non-singular, lower triangular 3x3 matrix:

l11 0 0 I1 bl
lo1 laa O T2 | = b2
31 l32 33 3 b3

> x1=0b1/l11,
Lo = (bz — 1215131)/522,
r3 = (bg — l3121 — l3222)/l33

Can be extended to systems n x n: forward substitution algorithm

leJ%) : 2,....,1m

O(n?) algorithm

A. Glatz: Computational Physics 14



Equivalent for upper triangular matrix [Ux=b]: backward substitution

br,
Lpn = —,
U’nn
1 n
ZE’Z:— bz_ Zu?/]xj 9 Z:n_]_, ,1

Algorithms (MatLab code)

A. Glatz: Computational Physics 15



3x3 Hilbert matrix:

m21=1/2, m31=1/3:

m3,=1:

2 X3=1, x,=1, x;=1

A. Glatz: Computational Physics

GE Example

(11 +
(AWx =bW) ¢ Loy +

\ %$1 +

(1 +
(APx=b®) { 0 +

. 0 +

(1 +

A®x=b®) { 0 +

L 0 +

General Hilbert matrix: h;;

1
0 + 573

=1/(i+j-1); i,j=1,...,n

16



pIVOts

GE only works if the pivots are finite.

There are classes of matrices, when GE is “safe”
* Ais diagonally dominant by rows

* Ais diagonally dominant by column

* Ais symmetric and positive definite

If zero (or small) pivots are encountered, one can reorder the
remaining rows of A® [blkl elements accordingly] in order to move
the largest (absolute value) element to the pivot position and
continue.



Pseudocode for GE with pivoting

for k =1 ... m:
//Find pivot for column k:
1 max := argmax (i1 =k ... m, abs(A[1, k]))
if A[i max, k] =0

error "Matrix 1s singular!"
swap rows (k, 1 max)
//Do for all rows below pivot:

for i =k + 1 ... m:
//Do for all remaining elements in current row:
for J =k ... n:
Ali, j]1 =:= Ali, Jj] - Alk, 3jl * (A[i, k] / Alk, kI)
//Fill lower triangular matrix with zeros:
Ali, k] :=0

A. Glatz: Computational Physics
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LU decomposition

GE is equivalent to performing a factorization of the matrix A into
the product of two matrices, A=LU, with U=A,

 Land U do not depend on b and can therefore be used to solve

the linear system for different b.
This means a reduction of computation time to O(n?)
e Let us go back to the Hilbert matrix example to see how the

matrix L is constructed:

1 0 0] I 1 0 0]
define: Mp=| -3 1 0]=|-mn 10
__% 0 1_ _—m31 0 1_
A
indeed: MA=MAD =0 L L | =aA®
|0 &5

A. Glatz: Computational Physics
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and

therefore

A. Glatz: Computational Physics

0O —1 1 1 i 0 —139
MoM;A = ABG) = U

A = (M:M;)"'U=LU

1
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Once the matrices L and U have been computed, solving the linear
system consists only of solving successively the two triangular systems:

A. Glatz: Computational Physics




LU implementation

Since L is a lower triangular matrix with diagonal entries equal to 1
and U is upper triangular, it is possible (and convenient) to store the
LU factorization directly in the same memory area that is occupied
by the matrix A. More precisely, U is stored in the upper triangular
part of A (including the diagonal), whilst L occupies the lower
triangular portion of A (the diagonal entries of L are not stored since

they are implicitly assumed to be 1).

A. Glatz: Computational Physics
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Special cases

In simulations the matrix A is often sparse, i.e., most elements zero.
In particular the have a band structure with finite diagonal elements and a few

finite off-diagonals.

- . a1 o 0
Tridiagonal matrices: .
(occur e.g. when discretizing  , _ by as
gradients and Laplacians) Ch1
L O bn an -
Then [ 1 0 | [ a1 o 0
52 1 Q9
L= S U= .
RS e
0 s ] 0 o
with bi '
a1 = aq, Bz: , ai:ai—ﬁici_l, 222,...,77,.
;1
Thomas algorithm O(k n) algorithm

(k number of finite off-diagonals)
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Lab today & Thursday

Implement a GE solver for the stationary

inhomogeneous heat (diffusion) equation

* use Gaussian profile and parameters given above

e use rectangular heat sink in the center with depth
0 and width a, for T,<Ty, T;>Ty, To=Ty

 N=10, 100, 1000




