
Computational Physics

One-Dimensional Stationary Heat Equation
Ø Boundary value problem
Ø Heat Equation
Ø Finite Differences
Ø Inhomogeneous case
Ø Gaussian Elimination (LU decomposition)

Boundary Value Problems

A. Glatz: Computational Physics 2

A linear boundary value problem (of order n) can be defined as

with the linear operator L[y]

f(x) and ak(x) are continuous, given functions; y(k)(x) are the kth spatial derivates
Boundary conditions (BC) are therefore defined as (constants 𝛼𝜈k, 𝛽𝜈k, 𝜆𝜈 are given)

Example for n=2:

Discretization (using central differences) results then in a linear equation system for
the yk, which one needs to solve, e.g. Gaussian elimination,

Read chapter 8 & Appendix C

Chapter 8
Numerics of Ordinary Differential Equations:
Boundary Value Problems

8.1 Introduction

It is the aim of this chapter to introduce some of the basics methods developed to
solve boundary value problems. Since a treatment of all available concepts is far
too extensive, we will concentrate on two approaches, namely the finite difference
approach and shooting methods [1–5]. Furthermore, we will strictly focus on linear
boundary value problems defined on a finite interval Œa; b! ! R. A boundary value
problem is referred to as linear if both the differential equation and the boundary
conditions are linear. Such a problem of order n is of the form

(
LŒy! D f .x/; x 2 Œa; b! ;

U" Œy! D #"; " D 1; : : : ; n :
(8.1)

Here, LŒy! is a linear operator

LŒy! D
nX

kD0
ak.x/y.k/.x/ ; (8.2)

where y.k/.x/ denotes the k-th spatial derivative of y.x/, i.e. y.k/ " dky.x/=dxk and
f .x/ as well as the ak.x/ are given functions which we assume to be continuous.
Accordingly, linear boundary conditions U" Œy! can be formulated as

U" Œy! D
n!1X

kD0

!
˛"ky.k/.a/C ˇ"ky.k/.b/

"
D #" ; (8.3)

© Springer International Publishing Switzerland 2016
B.A. Stickler, E. Schachinger, Basic Concepts in Computational Physics,
DOI 10.1007/978-3-319-27265-8_8

117

Chapter 8
Numerics of Ordinary Differential Equations:
Boundary Value Problems

8.1 Introduction

It is the aim of this chapter to introduce some of the basics methods developed to
solve boundary value problems. Since a treatment of all available concepts is far
too extensive, we will concentrate on two approaches, namely the finite difference
approach and shooting methods [1–5]. Furthermore, we will strictly focus on linear
boundary value problems defined on a finite interval Œa; b! ! R. A boundary value
problem is referred to as linear if both the differential equation and the boundary
conditions are linear. Such a problem of order n is of the form

(
LŒy! D f .x/; x 2 Œa; b! ;

U" Œy! D #"; " D 1; : : : ; n :
(8.1)

Here, LŒy! is a linear operator

LŒy! D
nX

kD0
ak.x/y.k/.x/ ; (8.2)

where y.k/.x/ denotes the k-th spatial derivative of y.x/, i.e. y.k/ " dky.x/=dxk and
f .x/ as well as the ak.x/ are given functions which we assume to be continuous.
Accordingly, linear boundary conditions U" Œy! can be formulated as

U" Œy! D
n!1X

kD0

!
˛"ky.k/.a/C ˇ"ky.k/.b/

"
D #" ; (8.3)

© Springer International Publishing Switzerland 2016
B.A. Stickler, E. Schachinger, Basic Concepts in Computational Physics,
DOI 10.1007/978-3-319-27265-8_8

117

Chapter 8
Numerics of Ordinary Differential Equations:
Boundary Value Problems

8.1 Introduction

It is the aim of this chapter to introduce some of the basics methods developed to
solve boundary value problems. Since a treatment of all available concepts is far
too extensive, we will concentrate on two approaches, namely the finite difference
approach and shooting methods [1–5]. Furthermore, we will strictly focus on linear
boundary value problems defined on a finite interval Œa; b! ! R. A boundary value
problem is referred to as linear if both the differential equation and the boundary
conditions are linear. Such a problem of order n is of the form

(
LŒy! D f .x/; x 2 Œa; b! ;

U" Œy! D #"; " D 1; : : : ; n :
(8.1)

Here, LŒy! is a linear operator

LŒy! D
nX

kD0
ak.x/y.k/.x/ ; (8.2)

where y.k/.x/ denotes the k-th spatial derivative of y.x/, i.e. y.k/ " dky.x/=dxk and
f .x/ as well as the ak.x/ are given functions which we assume to be continuous.
Accordingly, linear boundary conditions U" Œy! can be formulated as

U" Œy! D
n!1X

kD0

!
˛"ky.k/.a/C ˇ"ky.k/.b/

"
D #" ; (8.3)

© Springer International Publishing Switzerland 2016
B.A. Stickler, E. Schachinger, Basic Concepts in Computational Physics,
DOI 10.1007/978-3-319-27265-8_8

117

118 8 Numerics of Ordinary Differential Equations: Boundary Value Problems

where the ˛!k, ˇ!k and "! are given constants. The question in which cases a solution
to the boundary value problem (8.1) exists and whether or not this solution will be
unique [6], will not be discussed here.

Let us introduce some further conventions: The differential equation in the first
line of Eq. (8.1) is referred to as homogeneous if the function f .x/ D 0 for all
x 2 Œa; b#. In analogy, the boundary conditions are referred to as homogeneous if the
constants "! D 0 for all ! D 1; : : : ; n. Finally, the boundary value problem (8.1)
is referred to as homogeneous if the differential equation is homogeneous and the
boundary conditions are homogeneous as well. In all other cases it is referred to as
inhomogeneous. Moreover, the boundary conditions are said to be decoupled if the
function values at the two different boundaries do not mix.

One of the most important types of boundary value problems in physics are linear
second order boundary value problems with decoupled boundary conditions. They
are of the form:

a2.x/y00.x/C a1.x/y0.x/C a0.x/y.x/ D f .x/ ; x 2 Œa; b# ; (8.4a)

˛0y.a/C ˛1y0.a/ D "1; j˛0j C j˛1j ¤ 0 ; (8.4b)

ˇ0y.b/C ˇ1y0.b/ D "2; jˇ0j C jˇ1j ¤ 0 : (8.4c)

This chapter focuses mainly on problems of this kind.
In particular, for second order differential equations, boundary conditions of the

form

y.a/ D ˛ ; y.b/ D ˇ ; (8.5)

are referred to as boundary conditions of the first kind or DIRICHLET boundary
conditions. On the other hand, boundary conditions of the form

y0.a/ D ˛ ; y0.b/ D ˇ ; (8.6)

are referred to as boundary conditions of the second kind or NEUMANN boundary
conditions and boundary conditions of the form (8.4) are referred to as boundary
conditions of the third kind or STURM boundary conditions.

We note, that the particular case of decoupled boundary conditions does not
include problems like

y.a/ D y.b/ ¤ 0 : (8.7)

We encountered such a condition in Sect. 7.3 where we introduced boundary
conditions of this form as periodic boundary conditions.

In the following section the method of finite differences will be applied to solve
boundary value problems of the form (8.4). On the other hand, shooting methods, in
particular the method developed by NUMEROV (see, for instance, [7] and references
therein), will be the topic of the third section.

118 8 Numerics of Ordinary Differential Equations: Boundary Value Problems

where the ˛!k, ˇ!k and "! are given constants. The question in which cases a solution
to the boundary value problem (8.1) exists and whether or not this solution will be
unique [6], will not be discussed here.

Let us introduce some further conventions: The differential equation in the first
line of Eq. (8.1) is referred to as homogeneous if the function f .x/ D 0 for all
x 2 Œa; b#. In analogy, the boundary conditions are referred to as homogeneous if the
constants "! D 0 for all ! D 1; : : : ; n. Finally, the boundary value problem (8.1)
is referred to as homogeneous if the differential equation is homogeneous and the
boundary conditions are homogeneous as well. In all other cases it is referred to as
inhomogeneous. Moreover, the boundary conditions are said to be decoupled if the
function values at the two different boundaries do not mix.

One of the most important types of boundary value problems in physics are linear
second order boundary value problems with decoupled boundary conditions. They
are of the form:

a2.x/y00.x/C a1.x/y0.x/C a0.x/y.x/ D f .x/ ; x 2 Œa; b# ; (8.4a)

˛0y.a/C ˛1y0.a/ D "1; j˛0j C j˛1j ¤ 0 ; (8.4b)

ˇ0y.b/C ˇ1y0.b/ D "2; jˇ0j C jˇ1j ¤ 0 : (8.4c)

This chapter focuses mainly on problems of this kind.
In particular, for second order differential equations, boundary conditions of the

form

y.a/ D ˛ ; y.b/ D ˇ ; (8.5)

are referred to as boundary conditions of the first kind or DIRICHLET boundary
conditions. On the other hand, boundary conditions of the form

y0.a/ D ˛ ; y0.b/ D ˇ ; (8.6)

are referred to as boundary conditions of the second kind or NEUMANN boundary
conditions and boundary conditions of the form (8.4) are referred to as boundary
conditions of the third kind or STURM boundary conditions.

We note, that the particular case of decoupled boundary conditions does not
include problems like

y.a/ D y.b/ ¤ 0 : (8.7)

We encountered such a condition in Sect. 7.3 where we introduced boundary
conditions of this form as periodic boundary conditions.

In the following section the method of finite differences will be applied to solve
boundary value problems of the form (8.4). On the other hand, shooting methods, in
particular the method developed by NUMEROV (see, for instance, [7] and references
therein), will be the topic of the third section.

Dirichlet BC
von-Neumann BC

The homogeneous heat equation

A. Glatz: Computational Physics 3

Chapter 9
The One-Dimensional Stationary Heat Equation

9.1 Introduction

This is the first of two chapters which illustrate the applicability of the methods
introduced in Chap. 8. Within this chapter the finite difference approach is employed
to solve the stationary heat equation. Let us motivate briefly this particular problem.
We consider a rod of length L which is supposed to be kept at constant temperatures
T0 and TN at its ends as illustrated in Fig. 9.1. The homogeneous heat equation is a
linear partial differential equation of the form

@

@t
T.x; t/ D !"T.x; t/ : (9.1)

Here T.x; t/ is the temperature as a function of space x 2 R3 and time t 2 R,
" D r2 D @2x C @2y C @2z is the LAPLACE operator, and ! D const is the thermal
diffusivity.

We remark, that Eq. (9.1) is a partial differential equation together with initial
and boundary conditions. Moreover, we note in passing that the heat equation is
equivalent to the diffusion equation [1]

@

@t
#.x; t/ D D"#.x; t/ ; (9.2)

with particle density #.x; t/ and the diffusion coefficientD D const. Here we restrict
ourselves to a simplified situation in order to test the validity of the finite difference
approach discussed in Sect. 8.2. The general solution of the heat or diffusion
equation will be discussed in Sect. 11.3. (The problem of the one-dimensional heat
equation was studied in all conceivable detail by J. R. CANNON [2].)

If we assume that the cylindrical surface of the rod is perfectly isolated, we can
restrict the problem to a one-dimensional problem. Furthermore, we assume that the

© Springer International Publishing Switzerland 2016
B.A. Stickler, E. Schachinger, Basic Concepts in Computational Physics,
DOI 10.1007/978-3-319-27265-8_9

131

Here we consider a rod of length L, which is kept at temperatures T0 and TN at
its ends

The temperature profile in this rod as a function of time is T(x,t). The heat
equation is then defined as

which is a linear partial differential equation. The operator ∆ is the Laplace
operator, given by ∆=∇2=∂x

2+ ∂y
2+ ∂z

2 in 3D. 𝜅 is the thermal diffusivity.

132 9 The One-Dimensional Stationary Heat Equation

Fig. 9.1 We consider a rod
of length L. Its ends are kept
at constant temperatures T0
and TN , respectively

steady-state has been reached, i.e. @
@t T.x; t/ D 0. Hence, the remaining boundary

value problem is of the form

8
ˆ̂̂
<̂

ˆ̂̂
:̂

d2

dx2
T.x/ D 0; x 2 Œ0;L! ;

T.0/ D T0 ;

T.L/ D TN :

(9.3)

The solution can easily be found analytically and one obtains

T.x/ D T0 C .TN ! T0/
x
L
: (9.4)

In the following section we will apply the approach of finite differences to the
boundary value problem (9.3) as discussed in Sect. 8.2.

9.2 Finite Differences

We discretize the interval Œ0;L! according Chap. 2 by the introduction of NC1 grid-
points xn D nh, with h D L=N, x0 D 0, and xN D L. Furthermore, Tn " T.xn/ and,
in particular, we refer to the boundary conditions (9.3) as T0 and TN , respectively.

On the basis of this discretization, we approximate Eq. (9.3) by

TnC1 ! 2Tn C Tn!1
h2

D 0 ; (9.5)

or equivalently

TnC1 ! 2Tn C Tn!1 D 0 : (9.6)

We can rewrite this as a matrix equation,

AT D F ; (9.7)

…

A. Glatz: Computational Physics 4

The heat equation is typically solved together with initial and boundary value
conditions. It is equivalent to solving the diffusion equation:

where 𝜌(x,t) is the (particle) density and D the diffusion constant.
Here we concentrate on the 1D case and assume that a steady-state has been
reached when ∂tT(x,t)=0. Therefore, we get the boundary value problem:

Chapter 9
The One-Dimensional Stationary Heat Equation

9.1 Introduction

This is the first of two chapters which illustrate the applicability of the methods
introduced in Chap. 8. Within this chapter the finite difference approach is employed
to solve the stationary heat equation. Let us motivate briefly this particular problem.
We consider a rod of length L which is supposed to be kept at constant temperatures
T0 and TN at its ends as illustrated in Fig. 9.1. The homogeneous heat equation is a
linear partial differential equation of the form

@

@t
T.x; t/ D !"T.x; t/ : (9.1)

Here T.x; t/ is the temperature as a function of space x 2 R3 and time t 2 R,
" D r2 D @2x C @2y C @2z is the LAPLACE operator, and ! D const is the thermal
diffusivity.

We remark, that Eq. (9.1) is a partial differential equation together with initial
and boundary conditions. Moreover, we note in passing that the heat equation is
equivalent to the diffusion equation [1]

@

@t
#.x; t/ D D"#.x; t/ ; (9.2)

with particle density #.x; t/ and the diffusion coefficientD D const. Here we restrict
ourselves to a simplified situation in order to test the validity of the finite difference
approach discussed in Sect. 8.2. The general solution of the heat or diffusion
equation will be discussed in Sect. 11.3. (The problem of the one-dimensional heat
equation was studied in all conceivable detail by J. R. CANNON [2].)

If we assume that the cylindrical surface of the rod is perfectly isolated, we can
restrict the problem to a one-dimensional problem. Furthermore, we assume that the

© Springer International Publishing Switzerland 2016
B.A. Stickler, E. Schachinger, Basic Concepts in Computational Physics,
DOI 10.1007/978-3-319-27265-8_9

131

132 9 The One-Dimensional Stationary Heat Equation

Fig. 9.1 We consider a rod
of length L. Its ends are kept
at constant temperatures T0
and TN , respectively

steady-state has been reached, i.e. @
@t T.x; t/ D 0. Hence, the remaining boundary

value problem is of the form

8
ˆ̂̂
<̂

ˆ̂̂
:̂

d2

dx2
T.x/ D 0; x 2 Œ0;L! ;

T.0/ D T0 ;

T.L/ D TN :

(9.3)

The solution can easily be found analytically and one obtains

T.x/ D T0 C .TN ! T0/
x
L
: (9.4)

In the following section we will apply the approach of finite differences to the
boundary value problem (9.3) as discussed in Sect. 8.2.

9.2 Finite Differences

We discretize the interval Œ0;L! according Chap. 2 by the introduction of NC1 grid-
points xn D nh, with h D L=N, x0 D 0, and xN D L. Furthermore, Tn " T.xn/ and,
in particular, we refer to the boundary conditions (9.3) as T0 and TN , respectively.

On the basis of this discretization, we approximate Eq. (9.3) by

TnC1 ! 2Tn C Tn!1
h2

D 0 ; (9.5)

or equivalently

TnC1 ! 2Tn C Tn!1 D 0 : (9.6)

We can rewrite this as a matrix equation,

AT D F ; (9.7)

…

A. Glatz: Computational Physics 5

which has the (obvious) analytical solution:

132 9 The One-Dimensional Stationary Heat Equation

Fig. 9.1 We consider a rod
of length L. Its ends are kept
at constant temperatures T0
and TN , respectively

steady-state has been reached, i.e. @
@t T.x; t/ D 0. Hence, the remaining boundary

value problem is of the form

8
ˆ̂̂
<̂

ˆ̂̂
:̂

d2

dx2
T.x/ D 0; x 2 Œ0;L! ;

T.0/ D T0 ;

T.L/ D TN :

(9.3)

The solution can easily be found analytically and one obtains

T.x/ D T0 C .TN ! T0/
x
L
: (9.4)

In the following section we will apply the approach of finite differences to the
boundary value problem (9.3) as discussed in Sect. 8.2.

9.2 Finite Differences

We discretize the interval Œ0;L! according Chap. 2 by the introduction of NC1 grid-
points xn D nh, with h D L=N, x0 D 0, and xN D L. Furthermore, Tn " T.xn/ and,
in particular, we refer to the boundary conditions (9.3) as T0 and TN , respectively.

On the basis of this discretization, we approximate Eq. (9.3) by

TnC1 ! 2Tn C Tn!1
h2

D 0 ; (9.5)

or equivalently

TnC1 ! 2Tn C Tn!1 D 0 : (9.6)

We can rewrite this as a matrix equation,

AT D F ; (9.7)

Finite Differences

A. Glatz: Computational Physics 6

We discretize the interval [0; L] in N equal length, h, subintervals using N+1
grid points: xn=nh, h=L/N, x0=0, xN=L, Tn=T(xn)

⇔
The boundary conditions are defined by T0 and TN
This linear equation system for the T1,…, TN-1 are then written in the form

A⋅T=F
with T=(T1,…, TN-1)T
with and

132 9 The One-Dimensional Stationary Heat Equation

Fig. 9.1 We consider a rod
of length L. Its ends are kept
at constant temperatures T0
and TN , respectively

steady-state has been reached, i.e. @
@t T.x; t/ D 0. Hence, the remaining boundary

value problem is of the form

8
ˆ̂̂
<̂

ˆ̂̂
:̂

d2

dx2
T.x/ D 0; x 2 Œ0;L! ;

T.0/ D T0 ;

T.L/ D TN :

(9.3)

The solution can easily be found analytically and one obtains

T.x/ D T0 C .TN ! T0/
x
L
: (9.4)

In the following section we will apply the approach of finite differences to the
boundary value problem (9.3) as discussed in Sect. 8.2.

9.2 Finite Differences

We discretize the interval Œ0;L! according Chap. 2 by the introduction of NC1 grid-
points xn D nh, with h D L=N, x0 D 0, and xN D L. Furthermore, Tn " T.xn/ and,
in particular, we refer to the boundary conditions (9.3) as T0 and TN , respectively.

On the basis of this discretization, we approximate Eq. (9.3) by

TnC1 ! 2Tn C Tn!1
h2

D 0 ; (9.5)

or equivalently

TnC1 ! 2Tn C Tn!1 D 0 : (9.6)

We can rewrite this as a matrix equation,

AT D F ; (9.7)

132 9 The One-Dimensional Stationary Heat Equation

Fig. 9.1 We consider a rod
of length L. Its ends are kept
at constant temperatures T0
and TN , respectively

steady-state has been reached, i.e. @
@t T.x; t/ D 0. Hence, the remaining boundary

value problem is of the form

8
ˆ̂̂
<̂

ˆ̂̂
:̂

d2

dx2
T.x/ D 0; x 2 Œ0;L! ;

T.0/ D T0 ;

T.L/ D TN :

(9.3)

The solution can easily be found analytically and one obtains

T.x/ D T0 C .TN ! T0/
x
L
: (9.4)

In the following section we will apply the approach of finite differences to the
boundary value problem (9.3) as discussed in Sect. 8.2.

9.2 Finite Differences

We discretize the interval Œ0;L! according Chap. 2 by the introduction of NC1 grid-
points xn D nh, with h D L=N, x0 D 0, and xN D L. Furthermore, Tn " T.xn/ and,
in particular, we refer to the boundary conditions (9.3) as T0 and TN , respectively.

On the basis of this discretization, we approximate Eq. (9.3) by

TnC1 ! 2Tn C Tn!1
h2

D 0 ; (9.5)

or equivalently

TnC1 ! 2Tn C Tn!1 D 0 : (9.6)

We can rewrite this as a matrix equation,

AT D F ; (9.7)

9.2 Finite Differences 133

where the boundary conditions have already been included. In Eq. (9.7) the vector
T D .T1;T2; : : : ;TN!1/T . Furthermore, the tridiagonal matrix A is given by

A D

0

BBBBB@

!2 1 0 : : : 0

1 !2 1 0 : : : 0

0 1 !2 1
:::

: : :
: : :

: : :

0 : : : 1 !2

1

CCCCCA
; (9.8)

and the vector F by

F D

0

BBBBB@

!T0
0
:::

0

!TN

1

CCCCCA
: (9.9)

It is an easy task to solve Eq. (9.7) analytically. It follows from Eq. (9.6) that

TnC1 D 2Tn ! Tn!1; n D 1; : : : ;N ! 1 : (9.10)

We insert n D 1; 2; 3 in order to obtain

T2 D 2T1 ! T0 ; (9.11)

T3 D 2T2 ! T1 ;

D 3T1 ! 2T0 ; (9.12)

T4 D 2T3 ! T2 ;

D 4T1 ! 3T0 : (9.13)

We recognize the pattern and conclude that Tn has the general form

Tn D nT1 ! .n ! 1/T0 ; (9.14)

which we prove by complete induction:

TnC1 D 2Tn ! Tn!1

D 2ŒnT1 ! .n ! 1/T0!! Œ.n ! 1/T1 ! .n ! 2/T0!
D .nC 1/T1 ! nT0 : (9.15)

9.2 Finite Differences 133

where the boundary conditions have already been included. In Eq. (9.7) the vector
T D .T1;T2; : : : ;TN!1/T . Furthermore, the tridiagonal matrix A is given by

A D

0

BBBBB@

!2 1 0 : : : 0

1 !2 1 0 : : : 0

0 1 !2 1
:::

: : :
: : :

: : :

0 : : : 1 !2

1

CCCCCA
; (9.8)

and the vector F by

F D

0

BBBBB@

!T0
0
:::

0

!TN

1

CCCCCA
: (9.9)

It is an easy task to solve Eq. (9.7) analytically. It follows from Eq. (9.6) that

TnC1 D 2Tn ! Tn!1; n D 1; : : : ;N ! 1 : (9.10)

We insert n D 1; 2; 3 in order to obtain

T2 D 2T1 ! T0 ; (9.11)

T3 D 2T2 ! T1 ;

D 3T1 ! 2T0 ; (9.12)

T4 D 2T3 ! T2 ;

D 4T1 ! 3T0 : (9.13)

We recognize the pattern and conclude that Tn has the general form

Tn D nT1 ! .n ! 1/T0 ; (9.14)

which we prove by complete induction:

TnC1 D 2Tn ! Tn!1

D 2ŒnT1 ! .n ! 1/T0!! Œ.n ! 1/T1 ! .n ! 2/T0!
D .nC 1/T1 ! nT0 : (9.15)

FA

…

A. Glatz: Computational Physics 7

This is easily solved:

i.e.

in general:
which is quickly proven by induction:

9.2 Finite Differences 133

where the boundary conditions have already been included. In Eq. (9.7) the vector
T D .T1;T2; : : : ;TN!1/T . Furthermore, the tridiagonal matrix A is given by

A D

0

BBBBB@

!2 1 0 : : : 0

1 !2 1 0 : : : 0

0 1 !2 1
:::

: : :
: : :

: : :

0 : : : 1 !2

1

CCCCCA
; (9.8)

and the vector F by

F D

0

BBBBB@

!T0
0
:::

0

!TN

1

CCCCCA
: (9.9)

It is an easy task to solve Eq. (9.7) analytically. It follows from Eq. (9.6) that

TnC1 D 2Tn ! Tn!1; n D 1; : : : ;N ! 1 : (9.10)

We insert n D 1; 2; 3 in order to obtain

T2 D 2T1 ! T0 ; (9.11)

T3 D 2T2 ! T1 ;

D 3T1 ! 2T0 ; (9.12)

T4 D 2T3 ! T2 ;

D 4T1 ! 3T0 : (9.13)

We recognize the pattern and conclude that Tn has the general form

Tn D nT1 ! .n ! 1/T0 ; (9.14)

which we prove by complete induction:

TnC1 D 2Tn ! Tn!1

D 2ŒnT1 ! .n ! 1/T0!! Œ.n ! 1/T1 ! .n ! 2/T0!
D .nC 1/T1 ! nT0 : (9.15)

9.2 Finite Differences 133

where the boundary conditions have already been included. In Eq. (9.7) the vector
T D .T1;T2; : : : ;TN!1/T . Furthermore, the tridiagonal matrix A is given by

A D

0

BBBBB@

!2 1 0 : : : 0

1 !2 1 0 : : : 0

0 1 !2 1
:::

: : :
: : :

: : :

0 : : : 1 !2

1

CCCCCA
; (9.8)

and the vector F by

F D

0

BBBBB@

!T0
0
:::

0

!TN

1

CCCCCA
: (9.9)

It is an easy task to solve Eq. (9.7) analytically. It follows from Eq. (9.6) that

TnC1 D 2Tn ! Tn!1; n D 1; : : : ;N ! 1 : (9.10)

We insert n D 1; 2; 3 in order to obtain

T2 D 2T1 ! T0 ; (9.11)

T3 D 2T2 ! T1 ;

D 3T1 ! 2T0 ; (9.12)

T4 D 2T3 ! T2 ;

D 4T1 ! 3T0 : (9.13)

We recognize the pattern and conclude that Tn has the general form

Tn D nT1 ! .n ! 1/T0 ; (9.14)

which we prove by complete induction:

TnC1 D 2Tn ! Tn!1

D 2ŒnT1 ! .n ! 1/T0!! Œ.n ! 1/T1 ! .n ! 2/T0!
D .nC 1/T1 ! nT0 : (9.15)

9.2 Finite Differences 133

where the boundary conditions have already been included. In Eq. (9.7) the vector
T D .T1;T2; : : : ;TN!1/T . Furthermore, the tridiagonal matrix A is given by

A D

0

BBBBB@

!2 1 0 : : : 0

1 !2 1 0 : : : 0

0 1 !2 1
:::

: : :
: : :

: : :

0 : : : 1 !2

1

CCCCCA
; (9.8)

and the vector F by

F D

0

BBBBB@

!T0
0
:::

0

!TN

1

CCCCCA
: (9.9)

It is an easy task to solve Eq. (9.7) analytically. It follows from Eq. (9.6) that

TnC1 D 2Tn ! Tn!1; n D 1; : : : ;N ! 1 : (9.10)

We insert n D 1; 2; 3 in order to obtain

T2 D 2T1 ! T0 ; (9.11)

T3 D 2T2 ! T1 ;

D 3T1 ! 2T0 ; (9.12)

T4 D 2T3 ! T2 ;

D 4T1 ! 3T0 : (9.13)

We recognize the pattern and conclude that Tn has the general form

Tn D nT1 ! .n ! 1/T0 ; (9.14)

which we prove by complete induction:

TnC1 D 2Tn ! Tn!1

D 2ŒnT1 ! .n ! 1/T0!! Œ.n ! 1/T1 ! .n ! 2/T0!
D .nC 1/T1 ! nT0 : (9.15)

9.2 Finite Differences 133

where the boundary conditions have already been included. In Eq. (9.7) the vector
T D .T1;T2; : : : ;TN!1/T . Furthermore, the tridiagonal matrix A is given by

A D

0

BBBBB@

!2 1 0 : : : 0

1 !2 1 0 : : : 0

0 1 !2 1
:::

: : :
: : :

: : :

0 : : : 1 !2

1

CCCCCA
; (9.8)

and the vector F by

F D

0

BBBBB@

!T0
0
:::

0

!TN

1

CCCCCA
: (9.9)

It is an easy task to solve Eq. (9.7) analytically. It follows from Eq. (9.6) that

TnC1 D 2Tn ! Tn!1; n D 1; : : : ;N ! 1 : (9.10)

We insert n D 1; 2; 3 in order to obtain

T2 D 2T1 ! T0 ; (9.11)

T3 D 2T2 ! T1 ;

D 3T1 ! 2T0 ; (9.12)

T4 D 2T3 ! T2 ;

D 4T1 ! 3T0 : (9.13)

We recognize the pattern and conclude that Tn has the general form

Tn D nT1 ! .n ! 1/T0 ; (9.14)

which we prove by complete induction:

TnC1 D 2Tn ! Tn!1

D 2ŒnT1 ! .n ! 1/T0!! Œ.n ! 1/T1 ! .n ! 2/T0!
D .nC 1/T1 ! nT0 : (9.15)

…

A. Glatz: Computational Physics 8

Since TN is kept constant, we can infer T1:

and finally:

which is just the discretized version of the analytic solution. I.e. the solution is
exact, which is not surprising as finite derivatives are exact for linear functions.

134 9 The One-Dimensional Stationary Heat Equation

Hence, expression (9.14) is valid for all n D 1; : : : ;N. However, since TN is kept
constant according to the boundary condition, we can determine T1 from

TN D NT1 ! NT0 C T0 ; (9.16)

which yields

T1 D
TN ! T0

N
C T0 : (9.17)

Inserting (9.17) into (9.14) gives

Tn D T0 C .TN ! T0/
n
N

D T0 C .TN ! T0/
nh
L
; (9.18)

which is exactly the discretized version of Eq. (9.4). Hence the finite difference
approach to the boundary value problem (9.3) is exact and independent of the
grid-spacing h. This is not surprising since we proved already in Chap. 2 that finite
difference derivatives are exact for linear functions.

9.3 A Second Scenario

We consider the inhomogeneous heat equation

@

@t
T.x; t/ D !"T.x; t/ ! # .x; t/ : (9.19)

Here # .x; t/ " # .x/ is some heat source or heat drain, which is assumed to be
independent of time t. Again, we consider the one dimensional, stationary case, i.e.

d2

dx2
T.x/ D 1

!
.x/ ; (9.20)

with the same boundary conditions as in Eq. (9.4). Furthermore, we assume # .x/ to
be of the form

.x/ D $

`
exp

"
!
!
x ! L

2

"2

`2

#
; (9.21)

i.e. # .x/ has the form of a GAUSS peak which is centered at x D L=2 and has a width
determined by the parameter ` and a maximum height given by the constant$. Such

134 9 The One-Dimensional Stationary Heat Equation

Hence, expression (9.14) is valid for all n D 1; : : : ;N. However, since TN is kept
constant according to the boundary condition, we can determine T1 from

TN D NT1 ! NT0 C T0 ; (9.16)

which yields

T1 D
TN ! T0

N
C T0 : (9.17)

Inserting (9.17) into (9.14) gives

Tn D T0 C .TN ! T0/
n
N

D T0 C .TN ! T0/
nh
L
; (9.18)

which is exactly the discretized version of Eq. (9.4). Hence the finite difference
approach to the boundary value problem (9.3) is exact and independent of the
grid-spacing h. This is not surprising since we proved already in Chap. 2 that finite
difference derivatives are exact for linear functions.

9.3 A Second Scenario

We consider the inhomogeneous heat equation

@

@t
T.x; t/ D !"T.x; t/ ! # .x; t/ : (9.19)

Here # .x; t/ " # .x/ is some heat source or heat drain, which is assumed to be
independent of time t. Again, we consider the one dimensional, stationary case, i.e.

d2

dx2
T.x/ D 1

!
.x/ ; (9.20)

with the same boundary conditions as in Eq. (9.4). Furthermore, we assume # .x/ to
be of the form

.x/ D $

`
exp

"
!
!
x ! L

2

"2

`2

#
; (9.21)

i.e. # .x/ has the form of a GAUSS peak which is centered at x D L=2 and has a width
determined by the parameter ` and a maximum height given by the constant$. Such

134 9 The One-Dimensional Stationary Heat Equation

Hence, expression (9.14) is valid for all n D 1; : : : ;N. However, since TN is kept
constant according to the boundary condition, we can determine T1 from

TN D NT1 ! NT0 C T0 ; (9.16)

which yields

T1 D
TN ! T0

N
C T0 : (9.17)

Inserting (9.17) into (9.14) gives

Tn D T0 C .TN ! T0/
n
N

D T0 C .TN ! T0/
nh
L
; (9.18)

which is exactly the discretized version of Eq. (9.4). Hence the finite difference
approach to the boundary value problem (9.3) is exact and independent of the
grid-spacing h. This is not surprising since we proved already in Chap. 2 that finite
difference derivatives are exact for linear functions.

9.3 A Second Scenario

We consider the inhomogeneous heat equation

@

@t
T.x; t/ D !"T.x; t/ ! # .x; t/ : (9.19)

Here # .x; t/ " # .x/ is some heat source or heat drain, which is assumed to be
independent of time t. Again, we consider the one dimensional, stationary case, i.e.

d2

dx2
T.x/ D 1

!
.x/ ; (9.20)

with the same boundary conditions as in Eq. (9.4). Furthermore, we assume # .x/ to
be of the form

.x/ D $

`
exp

"
!
!
x ! L

2

"2

`2

#
; (9.21)

i.e. # .x/ has the form of a GAUSS peak which is centered at x D L=2 and has a width
determined by the parameter ` and a maximum height given by the constant$. Such

Inhomogeneous heat equation

A. Glatz: Computational Physics 9

We consider now:

in particular the 1D stationary case:

Next, we consider the special case of

i.e. a Gaussian peak in the middle of the system of width ℓ and height 𝛩
Physically this means the rod is locally heated or cooled in the center.
for ℓ→0 this function becomes:

134 9 The One-Dimensional Stationary Heat Equation

Hence, expression (9.14) is valid for all n D 1; : : : ;N. However, since TN is kept
constant according to the boundary condition, we can determine T1 from

TN D NT1 ! NT0 C T0 ; (9.16)

which yields

T1 D
TN ! T0

N
C T0 : (9.17)

Inserting (9.17) into (9.14) gives

Tn D T0 C .TN ! T0/
n
N

D T0 C .TN ! T0/
nh
L
; (9.18)

which is exactly the discretized version of Eq. (9.4). Hence the finite difference
approach to the boundary value problem (9.3) is exact and independent of the
grid-spacing h. This is not surprising since we proved already in Chap. 2 that finite
difference derivatives are exact for linear functions.

9.3 A Second Scenario

We consider the inhomogeneous heat equation

@

@t
T.x; t/ D !"T.x; t/ ! # .x; t/ : (9.19)

Here # .x; t/ " # .x/ is some heat source or heat drain, which is assumed to be
independent of time t. Again, we consider the one dimensional, stationary case, i.e.

d2

dx2
T.x/ D 1

!
.x/ ; (9.20)

with the same boundary conditions as in Eq. (9.4). Furthermore, we assume # .x/ to
be of the form

.x/ D $

`
exp

"
!
!
x ! L

2

"2

`2

#
; (9.21)

i.e. # .x/ has the form of a GAUSS peak which is centered at x D L=2 and has a width
determined by the parameter ` and a maximum height given by the constant$. Such

Here 𝛤(x,t)=𝛤(x)

134 9 The One-Dimensional Stationary Heat Equation

Hence, expression (9.14) is valid for all n D 1; : : : ;N. However, since TN is kept
constant according to the boundary condition, we can determine T1 from

TN D NT1 ! NT0 C T0 ; (9.16)

which yields

T1 D
TN ! T0

N
C T0 : (9.17)

Inserting (9.17) into (9.14) gives

Tn D T0 C .TN ! T0/
n
N

D T0 C .TN ! T0/
nh
L
; (9.18)

which is exactly the discretized version of Eq. (9.4). Hence the finite difference
approach to the boundary value problem (9.3) is exact and independent of the
grid-spacing h. This is not surprising since we proved already in Chap. 2 that finite
difference derivatives are exact for linear functions.

9.3 A Second Scenario

We consider the inhomogeneous heat equation

@

@t
T.x; t/ D !"T.x; t/ ! # .x; t/ : (9.19)

Here # .x; t/ " # .x/ is some heat source or heat drain, which is assumed to be
independent of time t. Again, we consider the one dimensional, stationary case, i.e.

d2

dx2
T.x/ D 1

!
.x/ ; (9.20)

with the same boundary conditions as in Eq. (9.4). Furthermore, we assume # .x/ to
be of the form

.x/ D $

`
exp

"
!
!
x ! L

2

"2

`2

#
; (9.21)

i.e. # .x/ has the form of a GAUSS peak which is centered at x D L=2 and has a width
determined by the parameter ` and a maximum height given by the constant$. Such

134 9 The One-Dimensional Stationary Heat Equation

Hence, expression (9.14) is valid for all n D 1; : : : ;N. However, since TN is kept
constant according to the boundary condition, we can determine T1 from

TN D NT1 ! NT0 C T0 ; (9.16)

which yields

T1 D
TN ! T0

N
C T0 : (9.17)

Inserting (9.17) into (9.14) gives

Tn D T0 C .TN ! T0/
n
N

D T0 C .TN ! T0/
nh
L
; (9.18)

which is exactly the discretized version of Eq. (9.4). Hence the finite difference
approach to the boundary value problem (9.3) is exact and independent of the
grid-spacing h. This is not surprising since we proved already in Chap. 2 that finite
difference derivatives are exact for linear functions.

9.3 A Second Scenario

We consider the inhomogeneous heat equation

@

@t
T.x; t/ D !"T.x; t/ ! # .x; t/ : (9.19)

Here # .x; t/ " # .x/ is some heat source or heat drain, which is assumed to be
independent of time t. Again, we consider the one dimensional, stationary case, i.e.

d2

dx2
T.x/ D 1

!
.x/ ; (9.20)

with the same boundary conditions as in Eq. (9.4). Furthermore, we assume # .x/ to
be of the form

.x/ D $

`
exp

"
!
!
x ! L

2

"2

`2

#
; (9.21)

i.e. # .x/ has the form of a GAUSS peak which is centered at x D L=2 and has a width
determined by the parameter ` and a maximum height given by the constant$. Such

9.3 A Second Scenario 135

a situation might occur, for instance, when the rod is heated with some kind of a heat
gun or cooled by a cold spot. (In cases where the diffusion equation (9.2) is used
to describe the random motion of electrons in some device, one can imagine, that
the density of electrons ! is constant at the contacts at x D 0 and x D L. The
source/drain term " .x/ then accounts for a constant generation or recombination
rate of electrons, for instance, through incoming light or intrinsic traps, respectively
[3].)

Furthermore, we note that in the limiting case `! 0 we have

lim
`!0

" .x/ / #ı

!
x ! L

2

"
; (9.22)

where ı."/ is the DIRAC ı-distribution; in this case the spatial extension of the
source/drain term " .x/ is infinitesimal.

We now employ the results of Sect. 8.2 and rewrite the system of equations in the
familiar form1

AT D F ; (9.23)

where A has already been defined in Eq. (9.8), T D .T1;T2; : : : ;TN!1/T , and F is
given by

F D h2

$

0

BBBBBB@

"1 ! $
h2 T0

"2
:::

"N!2
"N!1 ! $

h2 TN

1

CCCCCCA
: (9.24)

Here we used the notation "n # " .xn/.
The system is solved numerically quite easily using methods discussed by PRESS

et al. [4] for the solution of sets of algebraic equations of the kind (9.24) with
tridiagonal matrix A. We chose L D 10, $ D 1, # D !0:4, ` D 1, T0 D 0
and TN D 2. The resulting temperature profiles T.x/ (solid line) for different values
of N can be found in Figs. 9.2, 9.3, and 9.4 as well as the respective form of the
function " .x/ (dashed line). With increasing number of steps we see, as it was to be
expected, a refinement of the temperature profile. Its maximum does not quite agree
with the minimum of " .x/, it is shifted slightly towards the end of the rod because
of the boundary conditions, i.e. T0 < TN .

1We note that Eq. (9.20) can also be solved with the help of FOURIER transforms, see Appendix D.

…

A. Glatz: Computational Physics 10

The rhs of the linear equation system is then changed to:

everything else is unchanged.

9.3 A Second Scenario 135

a situation might occur, for instance, when the rod is heated with some kind of a heat
gun or cooled by a cold spot. (In cases where the diffusion equation (9.2) is used
to describe the random motion of electrons in some device, one can imagine, that
the density of electrons ! is constant at the contacts at x D 0 and x D L. The
source/drain term " .x/ then accounts for a constant generation or recombination
rate of electrons, for instance, through incoming light or intrinsic traps, respectively
[3].)

Furthermore, we note that in the limiting case `! 0 we have

lim
`!0

" .x/ / #ı

!
x ! L

2

"
; (9.22)

where ı."/ is the DIRAC ı-distribution; in this case the spatial extension of the
source/drain term " .x/ is infinitesimal.

We now employ the results of Sect. 8.2 and rewrite the system of equations in the
familiar form1

AT D F ; (9.23)

where A has already been defined in Eq. (9.8), T D .T1;T2; : : : ;TN!1/T , and F is
given by

F D h2

$

0

BBBBBB@

"1 ! $
h2 T0

"2
:::

"N!2
"N!1 ! $

h2 TN

1

CCCCCCA
: (9.24)

Here we used the notation "n # " .xn/.
The system is solved numerically quite easily using methods discussed by PRESS

et al. [4] for the solution of sets of algebraic equations of the kind (9.24) with
tridiagonal matrix A. We chose L D 10, $ D 1, # D !0:4, ` D 1, T0 D 0
and TN D 2. The resulting temperature profiles T.x/ (solid line) for different values
of N can be found in Figs. 9.2, 9.3, and 9.4 as well as the respective form of the
function " .x/ (dashed line). With increasing number of steps we see, as it was to be
expected, a refinement of the temperature profile. Its maximum does not quite agree
with the minimum of " .x/, it is shifted slightly towards the end of the rod because
of the boundary conditions, i.e. T0 < TN .

1We note that Eq. (9.20) can also be solved with the help of FOURIER transforms, see Appendix D.

F

9.3 A Second Scenario 135

a situation might occur, for instance, when the rod is heated with some kind of a heat
gun or cooled by a cold spot. (In cases where the diffusion equation (9.2) is used
to describe the random motion of electrons in some device, one can imagine, that
the density of electrons ! is constant at the contacts at x D 0 and x D L. The
source/drain term " .x/ then accounts for a constant generation or recombination
rate of electrons, for instance, through incoming light or intrinsic traps, respectively
[3].)

Furthermore, we note that in the limiting case `! 0 we have

lim
`!0

" .x/ / #ı

!
x ! L

2

"
; (9.22)

where ı."/ is the DIRAC ı-distribution; in this case the spatial extension of the
source/drain term " .x/ is infinitesimal.

We now employ the results of Sect. 8.2 and rewrite the system of equations in the
familiar form1

AT D F ; (9.23)

where A has already been defined in Eq. (9.8), T D .T1;T2; : : : ;TN!1/T , and F is
given by

F D h2

$

0

BBBBBB@

"1 ! $
h2 T0

"2
:::

"N!2
"N!1 ! $

h2 TN

1

CCCCCCA
: (9.24)

Here we used the notation "n # " .xn/.
The system is solved numerically quite easily using methods discussed by PRESS

et al. [4] for the solution of sets of algebraic equations of the kind (9.24) with
tridiagonal matrix A. We chose L D 10, $ D 1, # D !0:4, ` D 1, T0 D 0
and TN D 2. The resulting temperature profiles T.x/ (solid line) for different values
of N can be found in Figs. 9.2, 9.3, and 9.4 as well as the respective form of the
function " .x/ (dashed line). With increasing number of steps we see, as it was to be
expected, a refinement of the temperature profile. Its maximum does not quite agree
with the minimum of " .x/, it is shifted slightly towards the end of the rod because
of the boundary conditions, i.e. T0 < TN .

1We note that Eq. (9.20) can also be solved with the help of FOURIER transforms, see Appendix D.

numerical solutions

A. Glatz: Computational Physics 11

For L=10, 𝜅=1, 𝛩=-0.4, ℓ=1, T0=0, TN=2.0136 9 The One-Dimensional Stationary Heat Equation

Fig. 9.2 Temperature profile
T.x/ (solid line, left hand
scale) and the source function
! .x/ (dashed line, right hand
scale) for N D 5

Fig. 9.3 Temperature profile
T.x/ (solid line, left hand
scale) and the source function
! .x/ (dashed line, right hand
scale) for N D 10

Fig. 9.4 Temperature profile
T.x/ (solid line, left hand
scale) and the source function
! .x/ (dashed line, right hand
scale) for N D 100

136 9 The One-Dimensional Stationary Heat Equation

Fig. 9.2 Temperature profile
T.x/ (solid line, left hand
scale) and the source function
! .x/ (dashed line, right hand
scale) for N D 5

Fig. 9.3 Temperature profile
T.x/ (solid line, left hand
scale) and the source function
! .x/ (dashed line, right hand
scale) for N D 10

Fig. 9.4 Temperature profile
T.x/ (solid line, left hand
scale) and the source function
! .x/ (dashed line, right hand
scale) for N D 100

136 9 The One-Dimensional Stationary Heat Equation

Fig. 9.2 Temperature profile
T.x/ (solid line, left hand
scale) and the source function
! .x/ (dashed line, right hand
scale) for N D 5

Fig. 9.3 Temperature profile
T.x/ (solid line, left hand
scale) and the source function
! .x/ (dashed line, right hand
scale) for N D 10

Fig. 9.4 Temperature profile
T.x/ (solid line, left hand
scale) and the source function
! .x/ (dashed line, right hand
scale) for N D 100

N=5

N=10

N=100

Gaussian elimination (GE)

A. Glatz: Computational Physics 12

Gaussian Elimination:
• Reduce Ax=b to an equivalent system (that is, having the same solution) of

form Ux=b
U: upper triangular matrix, b: updated right side vector.

• The latter system can then be solved by backward substitution
• Let us denote the original system by A(1)x = b(1)

1. Introduce the multipliers:

2. Eliminate the unknown x1 in
the following rows i below row 1:

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 69

Thus, consider a nonsingular matrix A ∈ Rn×n, and suppose that the
diagonal entry a11 is non vanishing. Introducing the multipliers

mi1 =
a(1)
i1

a(1)
11

, i = 2, 3, . . . , n,

where a(1)
ij denote the elements of A(1), it is possible to eliminate the un-

known x1 from the rows other than the first one by simply subtracting
from row i, with i = 2, . . . , n, the first row multiplied by mi1 and doing
the same on the right side. If we now define

a(2)
ij = a(1)

ij −mi1a
(1)
1j , i, j = 2, . . . , n,

b(2)i = b(1)i −mi1b
(1)
1 , i = 2, . . . , n,

where b(1)i denote the components of b(1), we get a new system of the form





a(1)
11 a(1)

12 . . . a(1)
1n

0 a(2)
22 . . . a(2)

2n
...

...
...

0 a(2)
n2 . . . a(2)

nn









x1
x2
...
xn




=





b(1)1

b(2)2
...

b(2)n




,

which we denote by A(2)x = b(2), that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown
x2 is eliminated from rows 3, . . . , n. In general, we end up with the finite
sequence of systems

A(k)x = b(k), 1 ≤ k ≤ n, (3.29)

where, for k ≥ 2, matrix A(k) takes the following form

A(k) =





a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0 . . . 0 a(k)
kk . . . a(k)

kn
...

...
...

...
0 . . . 0 a(k)

nk . . . a(k)
nn





,

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 69

Thus, consider a nonsingular matrix A ∈ Rn×n, and suppose that the
diagonal entry a11 is non vanishing. Introducing the multipliers

mi1 =
a(1)
i1

a(1)
11

, i = 2, 3, . . . , n,

where a(1)
ij denote the elements of A(1), it is possible to eliminate the un-

known x1 from the rows other than the first one by simply subtracting
from row i, with i = 2, . . . , n, the first row multiplied by mi1 and doing
the same on the right side. If we now define

a(2)
ij = a(1)

ij −mi1a
(1)
1j , i, j = 2, . . . , n,

b(2)i = b(1)i −mi1b
(1)
1 , i = 2, . . . , n,

where b(1)i denote the components of b(1), we get a new system of the form





a(1)
11 a(1)

12 . . . a(1)
1n

0 a(2)
22 . . . a(2)

2n
...

...
...

0 a(2)
n2 . . . a(2)

nn









x1
x2
...
xn




=





b(1)1

b(2)2
...

b(2)n




,

which we denote by A(2)x = b(2), that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown
x2 is eliminated from rows 3, . . . , n. In general, we end up with the finite
sequence of systems

A(k)x = b(k), 1 ≤ k ≤ n, (3.29)

where, for k ≥ 2, matrix A(k) takes the following form

A(k) =





a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0 . . . 0 a(k)
kk . . . a(k)

kn
...

...
...

...
0 . . . 0 a(k)

nk . . . a(k)
nn





,

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 69

Thus, consider a nonsingular matrix A ∈ Rn×n, and suppose that the
diagonal entry a11 is non vanishing. Introducing the multipliers

mi1 =
a(1)
i1

a(1)
11

, i = 2, 3, . . . , n,

where a(1)
ij denote the elements of A(1), it is possible to eliminate the un-

known x1 from the rows other than the first one by simply subtracting
from row i, with i = 2, . . . , n, the first row multiplied by mi1 and doing
the same on the right side. If we now define

a(2)
ij = a(1)

ij −mi1a
(1)
1j , i, j = 2, . . . , n,

b(2)i = b(1)i −mi1b
(1)
1 , i = 2, . . . , n,

where b(1)i denote the components of b(1), we get a new system of the form





a(1)
11 a(1)

12 . . . a(1)
1n

0 a(2)
22 . . . a(2)

2n
...

...
...

0 a(2)
n2 . . . a(2)

nn









x1
x2
...
xn




=





b(1)1

b(2)2
...

b(2)n




,

which we denote by A(2)x = b(2), that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown
x2 is eliminated from rows 3, . . . , n. In general, we end up with the finite
sequence of systems

A(k)x = b(k), 1 ≤ k ≤ n, (3.29)

where, for k ≥ 2, matrix A(k) takes the following form

A(k) =





a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0 . . . 0 a(k)
kk . . . a(k)

kn
...

...
...

...
0 . . . 0 a(k)

nk . . . a(k)
nn





,

è ó A(2)x = b(2)

…

A. Glatz: Computational Physics 13

Then eliminate x2 from rows 3,…,n, etc.
In general after k-1 elimination steps, we have a system:

And finally, we get:

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 69

Thus, consider a nonsingular matrix A ∈ Rn×n, and suppose that the
diagonal entry a11 is non vanishing. Introducing the multipliers

mi1 =
a(1)
i1

a(1)
11

, i = 2, 3, . . . , n,

where a(1)
ij denote the elements of A(1), it is possible to eliminate the un-

known x1 from the rows other than the first one by simply subtracting
from row i, with i = 2, . . . , n, the first row multiplied by mi1 and doing
the same on the right side. If we now define

a(2)
ij = a(1)

ij −mi1a
(1)
1j , i, j = 2, . . . , n,

b(2)i = b(1)i −mi1b
(1)
1 , i = 2, . . . , n,

where b(1)i denote the components of b(1), we get a new system of the form





a(1)
11 a(1)

12 . . . a(1)
1n

0 a(2)
22 . . . a(2)

2n
...

...
...

0 a(2)
n2 . . . a(2)

nn









x1
x2
...
xn




=





b(1)1

b(2)2
...

b(2)n




,

which we denote by A(2)x = b(2), that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown
x2 is eliminated from rows 3, . . . , n. In general, we end up with the finite
sequence of systems

A(k)x = b(k), 1 ≤ k ≤ n, (3.29)

where, for k ≥ 2, matrix A(k) takes the following form

A(k) =





a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0 . . . 0 a(k)
kk . . . a(k)

kn
...

...
...

...
0 . . . 0 a(k)

nk . . . a(k)
nn





,

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 69

Thus, consider a nonsingular matrix A ∈ Rn×n, and suppose that the
diagonal entry a11 is non vanishing. Introducing the multipliers

mi1 =
a(1)
i1

a(1)
11

, i = 2, 3, . . . , n,

where a(1)
ij denote the elements of A(1), it is possible to eliminate the un-

known x1 from the rows other than the first one by simply subtracting
from row i, with i = 2, . . . , n, the first row multiplied by mi1 and doing
the same on the right side. If we now define

a(2)
ij = a(1)

ij −mi1a
(1)
1j , i, j = 2, . . . , n,

b(2)i = b(1)i −mi1b
(1)
1 , i = 2, . . . , n,

where b(1)i denote the components of b(1), we get a new system of the form





a(1)
11 a(1)

12 . . . a(1)
1n

0 a(2)
22 . . . a(2)

2n
...

...
...

0 a(2)
n2 . . . a(2)

nn









x1
x2
...
xn




=





b(1)1

b(2)2
...

b(2)n




,

which we denote by A(2)x = b(2), that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown
x2 is eliminated from rows 3, . . . , n. In general, we end up with the finite
sequence of systems

A(k)x = b(k), 1 ≤ k ≤ n, (3.29)

where, for k ≥ 2, matrix A(k) takes the following form

A(k) =





a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0 . . . 0 a(k)
kk . . . a(k)

kn
...

...
...

...
0 . . . 0 a(k)

nk . . . a(k)
nn





,70 3. Direct Methods for the Solution of Linear Systems

having assumed that a(i)
ii != 0 for i = 1, . . . , k− 1. It is clear that for k = n

we obtain the upper triangular system A(n)x = b(n)





a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0
. . .

...
0 a(n)

nn









x1
x2
...
...
xn




=





b(1)1

b(2)2
...
...

b(n)
n





.

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A(n). The entries a(k)

kk are called
pivots and must obviously be non null for k = 1, . . . , n− 1.

In order to highlight the formulae which transform the k-th system into
the k + 1-th one, for k = 1, . . . , n− 1 we assume that a(k)

kk != 0 and define
the multiplier

mik =
a(k)
ik

a(k)
kk

, i = k + 1, . . . , n. (3.30)

Then we let

a(k+1)
ij = a(k)

ij −mika
(k)
kj , i, j = k + 1, . . . , n

b(k+1)
i = b(k)

i −mikb
(k)
k , i = k + 1, . . . , n.

(3.31)

Example 3.2 Let us use GEM to solve the following system

(A(1)x = b(1))






x1 + 1
2x2 + 1

3x3 = 11
6

1
2x1 + 1

3x2 + 1
4x3 = 13

12

1
3x1 + 1

4x2 + 1
5x3 = 47

60

,

which admits the solution x=(1, 1, 1)T . At the first step we compute the mul-
tipliers m21 = 1/2 and m31 = 1/3, and subtract from the second and third
equation of the system the first row multiplied by m21 and m31, respectively. We
obtain the equivalent system

(A(2)x = b(2))






x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 1
12x2 + 4

45x3 = 31
180

.

If we now subtract the second row multiplied by m32 = 1 from the third one, we
end up with the upper triangular system

(A(3)x = b(3))






x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 0 + 1
180x3 = 1

180

,

óUx=b

We assumed a(i)
ii¹ 0 (i=1,…,n-1). These elements are called pivots.

O(n3) algorithm

Triangular matrices: forward &
backward substitution

A. Glatz: Computational Physics 14

Consider the non-singular, lower triangular 3x3 matrix:

3.2 Solution of Triangular Systems 65

3.2 Solution of Triangular Systems

Consider the nonsingular 3×3 lower triangular system



l11 0 0
l21 l22 0
l31 l32 l33








x1
x2
x3



 =




b1
b2
b3



 .

Since the matrix is nonsingular, its diagonal entries lii, i = 1, 2, 3, are
non vanishing, hence we can solve sequentially for the unknown values
xi, i = 1, 2, 3 as follows

x1 = b1/l11,
x2 = (b2 − l21x1)/l22,
x3 = (b3 − l31x1 − l32x2)/l33.

This algorithm can be extended to systems n × n and is called forward
substitution. In the case of a system Lx=b, with L being a nonsingular
lower triangular matrix of order n (n ≥ 2), the method takes the form

x1 =
b1
l11

,

xi =
1
lii



bi −
i−1∑

j=1

lijxj



 , i = 2, . . . , n.
(3.22)

The number of multiplications and divisions to execute the algorithm is
equal to n(n+1)/2, while the number of sums and subtractions is n(n−1)/2.
The global operation count for (3.22) is thus n2 flops.

Similar conclusions can be drawn for a linear system Ux=b, where U
is a nonsingular upper triangular matrix of order n (n ≥ 2). In this case
the algorithm is called backward substitution and in the general case can
be written as

xn =
bn
unn

,

xi =
1
uii



bi −
n∑

j=i+1

uijxj



 , i = n− 1, . . . , 1.
(3.23)

Its computational cost is still n2 flops.

3.2.1 Implementation of Substitution Methods
Each i-th step of algorithm (3.22) requires performing the scalar product
between the row vector L(i, 1 : i − 1) (this notation denoting the vector
extracted from matrix L taking the elements of the i-th row from the first

3.2 Solution of Triangular Systems 65

3.2 Solution of Triangular Systems

Consider the nonsingular 3×3 lower triangular system



l11 0 0
l21 l22 0
l31 l32 l33








x1
x2
x3



 =




b1
b2
b3



 .

Since the matrix is nonsingular, its diagonal entries lii, i = 1, 2, 3, are
non vanishing, hence we can solve sequentially for the unknown values
xi, i = 1, 2, 3 as follows

x1 = b1/l11,
x2 = (b2 − l21x1)/l22,
x3 = (b3 − l31x1 − l32x2)/l33.

This algorithm can be extended to systems n × n and is called forward
substitution. In the case of a system Lx=b, with L being a nonsingular
lower triangular matrix of order n (n ≥ 2), the method takes the form

x1 =
b1
l11

,

xi =
1
lii



bi −
i−1∑

j=1

lijxj



 , i = 2, . . . , n.
(3.22)

The number of multiplications and divisions to execute the algorithm is
equal to n(n+1)/2, while the number of sums and subtractions is n(n−1)/2.
The global operation count for (3.22) is thus n2 flops.

Similar conclusions can be drawn for a linear system Ux=b, where U
is a nonsingular upper triangular matrix of order n (n ≥ 2). In this case
the algorithm is called backward substitution and in the general case can
be written as

xn =
bn
unn

,

xi =
1
uii



bi −
n∑

j=i+1

uijxj



 , i = n− 1, . . . , 1.
(3.23)

Its computational cost is still n2 flops.

3.2.1 Implementation of Substitution Methods
Each i-th step of algorithm (3.22) requires performing the scalar product
between the row vector L(i, 1 : i − 1) (this notation denoting the vector
extracted from matrix L taking the elements of the i-th row from the first

à

Can be extended to systems n × n: forward substitution algorithm

3.2 Solution of Triangular Systems 65

3.2 Solution of Triangular Systems

Consider the nonsingular 3×3 lower triangular system



l11 0 0
l21 l22 0
l31 l32 l33








x1
x2
x3



 =




b1
b2
b3



 .

Since the matrix is nonsingular, its diagonal entries lii, i = 1, 2, 3, are
non vanishing, hence we can solve sequentially for the unknown values
xi, i = 1, 2, 3 as follows

x1 = b1/l11,
x2 = (b2 − l21x1)/l22,
x3 = (b3 − l31x1 − l32x2)/l33.

This algorithm can be extended to systems n × n and is called forward
substitution. In the case of a system Lx=b, with L being a nonsingular
lower triangular matrix of order n (n ≥ 2), the method takes the form

x1 =
b1
l11

,

xi =
1
lii



bi −
i−1∑

j=1

lijxj



 , i = 2, . . . , n.
(3.22)

The number of multiplications and divisions to execute the algorithm is
equal to n(n+1)/2, while the number of sums and subtractions is n(n−1)/2.
The global operation count for (3.22) is thus n2 flops.

Similar conclusions can be drawn for a linear system Ux=b, where U
is a nonsingular upper triangular matrix of order n (n ≥ 2). In this case
the algorithm is called backward substitution and in the general case can
be written as

xn =
bn
unn

,

xi =
1
uii



bi −
n∑

j=i+1

uijxj



 , i = n− 1, . . . , 1.
(3.23)

Its computational cost is still n2 flops.

3.2.1 Implementation of Substitution Methods
Each i-th step of algorithm (3.22) requires performing the scalar product
between the row vector L(i, 1 : i − 1) (this notation denoting the vector
extracted from matrix L taking the elements of the i-th row from the first

O(n2) algorithm

…

A. Glatz: Computational Physics 15

Equivalent for upper triangular matrix [Ux=b]: backward substitution

3.2 Solution of Triangular Systems 65

3.2 Solution of Triangular Systems

Consider the nonsingular 3×3 lower triangular system



l11 0 0
l21 l22 0
l31 l32 l33








x1
x2
x3



 =




b1
b2
b3



 .

Since the matrix is nonsingular, its diagonal entries lii, i = 1, 2, 3, are
non vanishing, hence we can solve sequentially for the unknown values
xi, i = 1, 2, 3 as follows

x1 = b1/l11,
x2 = (b2 − l21x1)/l22,
x3 = (b3 − l31x1 − l32x2)/l33.

This algorithm can be extended to systems n × n and is called forward
substitution. In the case of a system Lx=b, with L being a nonsingular
lower triangular matrix of order n (n ≥ 2), the method takes the form

x1 =
b1
l11

,

xi =
1
lii



bi −
i−1∑

j=1

lijxj



 , i = 2, . . . , n.
(3.22)

The number of multiplications and divisions to execute the algorithm is
equal to n(n+1)/2, while the number of sums and subtractions is n(n−1)/2.
The global operation count for (3.22) is thus n2 flops.

Similar conclusions can be drawn for a linear system Ux=b, where U
is a nonsingular upper triangular matrix of order n (n ≥ 2). In this case
the algorithm is called backward substitution and in the general case can
be written as

xn =
bn
unn

,

xi =
1
uii



bi −
n∑

j=i+1

uijxj



 , i = n− 1, . . . , 1.
(3.23)

Its computational cost is still n2 flops.

3.2.1 Implementation of Substitution Methods
Each i-th step of algorithm (3.22) requires performing the scalar product
between the row vector L(i, 1 : i − 1) (this notation denoting the vector
extracted from matrix L taking the elements of the i-th row from the first

Algorithms (MatLab code)

66 3. Direct Methods for the Solution of Linear Systems

to the (i-1)-th column) and the column vector x(1 : i − 1). The access to
matrix L is thus by row; for that reason, the forward substitution algorithm,
when implemented in the form above, is called row-oriented.

Its coding is reported in Program 1 (the Program mat square that is
called by forward row merely checks that L is a square matrix).

Program 1 - forward row : Forward substitution: row-oriented version

function [x]=forward row(L,b)
[n]=mat square(L); x(1) = b(1)/L(1,1);
for i = 2:n, x (i) = (b(i)-L(i,1:i-1)*(x(1:i-1))’)/L(i,i); end
x=x’;

To obtain a column-oriented version of the same algorithm, we take ad-
vantage of the fact that i-th component of the vector x, once computed,
can be conveniently eliminated from the system.

An implementation of such a procedure, where the solution x is over-
written on the right vector b, is reported in Program 2.
Program 2 - forward col : Forward substitution: column-oriented version

function [b]=forward col(L,b)
[n]=mat square(L);
for j=1:n-1,

b(j)= b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j);
end; b(n) = b(n)/L(n,n);

Implementing the same algorithm by a row-oriented rather than a column-
oriented approach, might dramatically change its performance (but of course,
not the solution). The choice of the form of implementation must therefore
be subordinated to the specific hardware that is used.

Similar considerations hold for the backward substitution method, pre-
sented in (3.23) in its row-oriented version.
In Program 3 only the column-oriented version of the algorithm is coded.
As usual, the vector x is overwritten on b.
Program 3 - backward col : Backward substitution: column-oriented ver-
sion

function [b]=backward col(U,b)
[n]=mat square(U);
for j = n:-1:2,

b(j)=b(j)/U(j,j); b(1:j-1)=b(1:j-1)-b(j)*U(1:j-1,j);
end; b(1) = b(1)/U(1,1);

When large triangular systems must be solved, only the triangular portion
of the matrix should be stored leading to considerable saving of memory
resources.

66 3. Direct Methods for the Solution of Linear Systems

to the (i-1)-th column) and the column vector x(1 : i − 1). The access to
matrix L is thus by row; for that reason, the forward substitution algorithm,
when implemented in the form above, is called row-oriented.

Its coding is reported in Program 1 (the Program mat square that is
called by forward row merely checks that L is a square matrix).

Program 1 - forward row : Forward substitution: row-oriented version

function [x]=forward row(L,b)
[n]=mat square(L); x(1) = b(1)/L(1,1);
for i = 2:n, x (i) = (b(i)-L(i,1:i-1)*(x(1:i-1))’)/L(i,i); end
x=x’;

To obtain a column-oriented version of the same algorithm, we take ad-
vantage of the fact that i-th component of the vector x, once computed,
can be conveniently eliminated from the system.

An implementation of such a procedure, where the solution x is over-
written on the right vector b, is reported in Program 2.
Program 2 - forward col : Forward substitution: column-oriented version

function [b]=forward col(L,b)
[n]=mat square(L);
for j=1:n-1,

b(j)= b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j);
end; b(n) = b(n)/L(n,n);

Implementing the same algorithm by a row-oriented rather than a column-
oriented approach, might dramatically change its performance (but of course,
not the solution). The choice of the form of implementation must therefore
be subordinated to the specific hardware that is used.

Similar considerations hold for the backward substitution method, pre-
sented in (3.23) in its row-oriented version.
In Program 3 only the column-oriented version of the algorithm is coded.
As usual, the vector x is overwritten on b.
Program 3 - backward col : Backward substitution: column-oriented ver-
sion

function [b]=backward col(U,b)
[n]=mat square(U);
for j = n:-1:2,

b(j)=b(j)/U(j,j); b(1:j-1)=b(1:j-1)-b(j)*U(1:j-1,j);
end; b(1) = b(1)/U(1,1);

When large triangular systems must be solved, only the triangular portion
of the matrix should be stored leading to considerable saving of memory
resources.

GE Example

A. Glatz: Computational Physics 16

3x3 Hilbert matrix:

70 3. Direct Methods for the Solution of Linear Systems

having assumed that a(i)
ii != 0 for i = 1, . . . , k− 1. It is clear that for k = n

we obtain the upper triangular system A(n)x = b(n)





a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0
. . .

...
0 a(n)

nn









x1
x2
...
...
xn




=





b(1)1

b(2)2
...
...

b(n)
n





.

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A(n). The entries a(k)

kk are called
pivots and must obviously be non null for k = 1, . . . , n− 1.

In order to highlight the formulae which transform the k-th system into
the k + 1-th one, for k = 1, . . . , n− 1 we assume that a(k)

kk != 0 and define
the multiplier

mik =
a(k)
ik

a(k)
kk

, i = k + 1, . . . , n. (3.30)

Then we let

a(k+1)
ij = a(k)

ij −mika
(k)
kj , i, j = k + 1, . . . , n

b(k+1)
i = b(k)

i −mikb
(k)
k , i = k + 1, . . . , n.

(3.31)

Example 3.2 Let us use GEM to solve the following system

(A(1)x = b(1))






x1 + 1
2x2 + 1

3x3 = 11
6

1
2x1 + 1

3x2 + 1
4x3 = 13

12

1
3x1 + 1

4x2 + 1
5x3 = 47

60

,

which admits the solution x=(1, 1, 1)T . At the first step we compute the mul-
tipliers m21 = 1/2 and m31 = 1/3, and subtract from the second and third
equation of the system the first row multiplied by m21 and m31, respectively. We
obtain the equivalent system

(A(2)x = b(2))






x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 1
12x2 + 4

45x3 = 31
180

.

If we now subtract the second row multiplied by m32 = 1 from the third one, we
end up with the upper triangular system

(A(3)x = b(3))






x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 0 + 1
180x3 = 1

180

,

70 3. Direct Methods for the Solution of Linear Systems

having assumed that a(i)
ii != 0 for i = 1, . . . , k− 1. It is clear that for k = n

we obtain the upper triangular system A(n)x = b(n)





a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0
. . .

...
0 a(n)

nn









x1
x2
...
...
xn




=





b(1)1

b(2)2
...
...

b(n)
n





.

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A(n). The entries a(k)

kk are called
pivots and must obviously be non null for k = 1, . . . , n− 1.

In order to highlight the formulae which transform the k-th system into
the k + 1-th one, for k = 1, . . . , n− 1 we assume that a(k)

kk != 0 and define
the multiplier

mik =
a(k)
ik

a(k)
kk

, i = k + 1, . . . , n. (3.30)

Then we let

a(k+1)
ij = a(k)

ij −mika
(k)
kj , i, j = k + 1, . . . , n

b(k+1)
i = b(k)

i −mikb
(k)
k , i = k + 1, . . . , n.

(3.31)

Example 3.2 Let us use GEM to solve the following system

(A(1)x = b(1))






x1 + 1
2x2 + 1

3x3 = 11
6

1
2x1 + 1

3x2 + 1
4x3 = 13

12

1
3x1 + 1

4x2 + 1
5x3 = 47

60

,

which admits the solution x=(1, 1, 1)T . At the first step we compute the mul-
tipliers m21 = 1/2 and m31 = 1/3, and subtract from the second and third
equation of the system the first row multiplied by m21 and m31, respectively. We
obtain the equivalent system

(A(2)x = b(2))






x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 1
12x2 + 4

45x3 = 31
180

.

If we now subtract the second row multiplied by m32 = 1 from the third one, we
end up with the upper triangular system

(A(3)x = b(3))






x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 0 + 1
180x3 = 1

180

,

70 3. Direct Methods for the Solution of Linear Systems

having assumed that a(i)
ii != 0 for i = 1, . . . , k− 1. It is clear that for k = n

we obtain the upper triangular system A(n)x = b(n)





a(1)
11 a(1)

12 a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0
. . .

...
0 a(n)

nn









x1
x2
...
...
xn




=





b(1)1

b(2)2
...
...

b(n)
n





.

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A(n). The entries a(k)

kk are called
pivots and must obviously be non null for k = 1, . . . , n− 1.

In order to highlight the formulae which transform the k-th system into
the k + 1-th one, for k = 1, . . . , n− 1 we assume that a(k)

kk != 0 and define
the multiplier

mik =
a(k)
ik

a(k)
kk

, i = k + 1, . . . , n. (3.30)

Then we let

a(k+1)
ij = a(k)

ij −mika
(k)
kj , i, j = k + 1, . . . , n

b(k+1)
i = b(k)

i −mikb
(k)
k , i = k + 1, . . . , n.

(3.31)

Example 3.2 Let us use GEM to solve the following system

(A(1)x = b(1))






x1 + 1
2x2 + 1

3x3 = 11
6

1
2x1 + 1

3x2 + 1
4x3 = 13

12

1
3x1 + 1

4x2 + 1
5x3 = 47

60

,

which admits the solution x=(1, 1, 1)T . At the first step we compute the mul-
tipliers m21 = 1/2 and m31 = 1/3, and subtract from the second and third
equation of the system the first row multiplied by m21 and m31, respectively. We
obtain the equivalent system

(A(2)x = b(2))






x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 1
12x2 + 4

45x3 = 31
180

.

If we now subtract the second row multiplied by m32 = 1 from the third one, we
end up with the upper triangular system

(A(3)x = b(3))






x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 0 + 1
180x3 = 1

180

,

m21=1/2, m31=1/3:

m32=1:

à x3=1, x2=1, x1=1 General Hilbert matrix: hij=1/(i+j-1); i,j=1,…,n

pivots

A. Glatz: Computational Physics 17

GE only works if the pivots are finite.

There are classes of matrices, when GE is “safe”
• A is diagonally dominant by rows
• A is diagonally dominant by column
• A is symmetric and positive definite

If zero (or small) pivots are encountered, one can reorder the
remaining rows of A(k) [b(k) elements accordingly] in order to move
the largest (absolute value) element to the pivot position and
continue.

Pseudocode for GE with pivoting

A. Glatz: Computational Physics 18

for k = 1 ... m:
//Find pivot for column k:
i_max := argmax (i = k ... m, abs(A[i, k]))
if A[i_max, k] = 0
error "Matrix is singular!"

swap rows(k, i_max)
//Do for all rows below pivot:
for i = k + 1 ... m:
//Do for all remaining elements in current row:
for j = k ... n:
A[i, j] := A[i, j] - A[k, j] * (A[i, k] / A[k, k])

//Fill lower triangular matrix with zeros:
A[i, k] := 0

LU decomposition

A. Glatz: Computational Physics 19

GE is equivalent to performing a factorization of the matrix A into
the product of two matrices, A=LU, with U=A(n).

• L and U do not depend on b and can therefore be used to solve
the linear system for different b.
This means a reduction of computation time to O(n2)

• Let us go back to the Hilbert matrix example to see how the
matrix L is constructed:

define:

indeed:

72 3. Direct Methods for the Solution of Linear Systems

3.3.1 GEM as a Factorization Method
In this section we show how GEM is equivalent to performing a factorization
of the matrix A into the product of two matrices, A=LU, with U=A(n).
Since L and U depend only on A and not on the right hand side, the same
factorization can be reused when solving several linear systems having the
same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In
practice, to pass from A(1)=H3 to the matrix A(2) at the second step, we
have multiplied the system by the matrix

M1 =





1 0 0

− 1
2 1 0

− 1
3 0 1




=





1 0 0

−m21 1 0

−m31 0 1




.

Indeed,

M1A = M1A(1) =





1 1
2

1
3

0 1
12

1
12

0 1
12

4
45




= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
A(2) by the matrix

M2 =





1 0 0

0 1 0

0 −1 1




=





1 0 0

0 1 0

0 −m32 1




,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

mk = (0, . . . , 0,mk+1,k, . . . ,mn,k)T ∈ Rn

72 3. Direct Methods for the Solution of Linear Systems

3.3.1 GEM as a Factorization Method
In this section we show how GEM is equivalent to performing a factorization
of the matrix A into the product of two matrices, A=LU, with U=A(n).
Since L and U depend only on A and not on the right hand side, the same
factorization can be reused when solving several linear systems having the
same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In
practice, to pass from A(1)=H3 to the matrix A(2) at the second step, we
have multiplied the system by the matrix

M1 =





1 0 0

− 1
2 1 0

− 1
3 0 1




=





1 0 0

−m21 1 0

−m31 0 1




.

Indeed,

M1A = M1A(1) =





1 1
2

1
3

0 1
12

1
12

0 1
12

4
45




= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
A(2) by the matrix

M2 =





1 0 0

0 1 0

0 −1 1




=





1 0 0

0 1 0

0 −m32 1




,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

mk = (0, . . . , 0,mk+1,k, . . . ,mn,k)T ∈ Rn

…

A. Glatz: Computational Physics 20

72 3. Direct Methods for the Solution of Linear Systems

3.3.1 GEM as a Factorization Method
In this section we show how GEM is equivalent to performing a factorization
of the matrix A into the product of two matrices, A=LU, with U=A(n).
Since L and U depend only on A and not on the right hand side, the same
factorization can be reused when solving several linear systems having the
same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In
practice, to pass from A(1)=H3 to the matrix A(2) at the second step, we
have multiplied the system by the matrix

M1 =





1 0 0

− 1
2 1 0

− 1
3 0 1




=





1 0 0

−m21 1 0

−m31 0 1




.

Indeed,

M1A = M1A(1) =





1 1
2

1
3

0 1
12

1
12

0 1
12

4
45




= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
A(2) by the matrix

M2 =





1 0 0

0 1 0

0 −1 1




=





1 0 0

0 1 0

0 −m32 1




,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

mk = (0, . . . , 0,mk+1,k, . . . ,mn,k)T ∈ Rn

and

therefore

72 3. Direct Methods for the Solution of Linear Systems

3.3.1 GEM as a Factorization Method
In this section we show how GEM is equivalent to performing a factorization
of the matrix A into the product of two matrices, A=LU, with U=A(n).
Since L and U depend only on A and not on the right hand side, the same
factorization can be reused when solving several linear systems having the
same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In
practice, to pass from A(1)=H3 to the matrix A(2) at the second step, we
have multiplied the system by the matrix

M1 =





1 0 0

− 1
2 1 0

− 1
3 0 1




=





1 0 0

−m21 1 0

−m31 0 1




.

Indeed,

M1A = M1A(1) =





1 1
2

1
3

0 1
12

1
12

0 1
12

4
45




= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
A(2) by the matrix

M2 =





1 0 0

0 1 0

0 −1 1




=





1 0 0

0 1 0

0 −m32 1




,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

mk = (0, . . . , 0,mk+1,k, . . . ,mn,k)T ∈ Rn

72 3. Direct Methods for the Solution of Linear Systems

3.3.1 GEM as a Factorization Method
In this section we show how GEM is equivalent to performing a factorization
of the matrix A into the product of two matrices, A=LU, with U=A(n).
Since L and U depend only on A and not on the right hand side, the same
factorization can be reused when solving several linear systems having the
same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In
practice, to pass from A(1)=H3 to the matrix A(2) at the second step, we
have multiplied the system by the matrix

M1 =





1 0 0

− 1
2 1 0

− 1
3 0 1




=





1 0 0

−m21 1 0

−m31 0 1




.

Indeed,

M1A = M1A(1) =





1 1
2

1
3

0 1
12

1
12

0 1
12

4
45




= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
A(2) by the matrix

M2 =





1 0 0

0 1 0

0 −1 1




=





1 0 0

0 1 0

0 −m32 1




,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

mk = (0, . . . , 0,mk+1,k, . . . ,mn,k)T ∈ Rn

72 3. Direct Methods for the Solution of Linear Systems

3.3.1 GEM as a Factorization Method
In this section we show how GEM is equivalent to performing a factorization
of the matrix A into the product of two matrices, A=LU, with U=A(n).
Since L and U depend only on A and not on the right hand side, the same
factorization can be reused when solving several linear systems having the
same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In
practice, to pass from A(1)=H3 to the matrix A(2) at the second step, we
have multiplied the system by the matrix

M1 =





1 0 0

− 1
2 1 0

− 1
3 0 1




=





1 0 0

−m21 1 0

−m31 0 1




.

Indeed,

M1A = M1A(1) =





1 1
2

1
3

0 1
12

1
12

0 1
12

4
45




= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
A(2) by the matrix

M2 =





1 0 0

0 1 0

0 −1 1




=





1 0 0

0 1 0

0 −m32 1




,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

mk = (0, . . . , 0,mk+1,k, . . . ,mn,k)T ∈ RnIn general
3.3 The Gaussian Elimination Method (GEM) and LU Factorization 73

and defining

Mk =





1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 1 0 0
0 −mk+1,k 1 0
...

...
...

...
. . .

...
0 . . . −mn,k 0 . . . 1





= In − mkeTk

as the k-th Gaussian transformation matrix, one finds out that

(Mk)ip = δip − (mkeTk)ip = δip −mikδkp, i, p = 1, . . . , n.

On the other hand, from (3.31) we have that

a(k+1)
ij = a(k)

ij −mikδkka
(k)
kj =

n∑

p=1

(δip −mikδkp)a
(k)
pj , i, j = k + 1, . . . , n,

or, equivalently,

A(k+1) = MkA(k). (3.35)

As a consequence, at the end of the elimination process the matrices Mk,
with k = 1, . . . , n− 1, and the matrix U have been generated such that

Mn−1Mn−2 . . .M1A = U.

The matrices Mk are unit lower triangular with inverse given by

M−1
k = 2In − Mk = In + mkeTk , (3.36)

where (mieTi)(mjeTj) are equal to the null matrix if i "= j. As a consequence

A = M−1
1 M−1

2 . . .M−1
n−1U

= (In + m1eT1)(In + m2eT2) . . . (In + mn−1eTn−1)U

=

(

In +
n−1∑

i=1

mieTi

)

U

=





1 0 0

m21 1
...

... m32
. . .

...

...
...

. . . 0

mn1 mn2 . . . mn,n−1 1





U.

(3.37)

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 73

and defining

Mk =





1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 1 0 0
0 −mk+1,k 1 0
...

...
...

...
. . .

...
0 . . . −mn,k 0 . . . 1





= In − mkeTk

as the k-th Gaussian transformation matrix, one finds out that

(Mk)ip = δip − (mkeTk)ip = δip −mikδkp, i, p = 1, . . . , n.

On the other hand, from (3.31) we have that

a(k+1)
ij = a(k)

ij −mikδkka
(k)
kj =

n∑

p=1

(δip −mikδkp)a
(k)
pj , i, j = k + 1, . . . , n,

or, equivalently,

A(k+1) = MkA(k). (3.35)

As a consequence, at the end of the elimination process the matrices Mk,
with k = 1, . . . , n− 1, and the matrix U have been generated such that

Mn−1Mn−2 . . .M1A = U.

The matrices Mk are unit lower triangular with inverse given by

M−1
k = 2In − Mk = In + mkeTk , (3.36)

where (mieTi)(mjeTj) are equal to the null matrix if i "= j. As a consequence

A = M−1
1 M−1

2 . . .M−1
n−1U

= (In + m1eT1)(In + m2eT2) . . . (In + mn−1eTn−1)U

=

(

In +
n−1∑

i=1

mieTi

)

U

=





1 0 0

m21 1
...

... m32
. . .

...

...
...

. . . 0

mn1 mn2 . . . mn,n−1 1





U.

(3.37)

…

A. Glatz: Computational Physics 21

The complete elimination process is therefore:

with

we get L from:

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 73

and defining

Mk =





1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 1 0 0
0 −mk+1,k 1 0
...

...
...

...
. . .

...
0 . . . −mn,k 0 . . . 1





= In − mkeTk

as the k-th Gaussian transformation matrix, one finds out that

(Mk)ip = δip − (mkeTk)ip = δip −mikδkp, i, p = 1, . . . , n.

On the other hand, from (3.31) we have that

a(k+1)
ij = a(k)

ij −mikδkka
(k)
kj =

n∑

p=1

(δip −mikδkp)a
(k)
pj , i, j = k + 1, . . . , n,

or, equivalently,

A(k+1) = MkA(k). (3.35)

As a consequence, at the end of the elimination process the matrices Mk,
with k = 1, . . . , n− 1, and the matrix U have been generated such that

Mn−1Mn−2 . . .M1A = U.

The matrices Mk are unit lower triangular with inverse given by

M−1
k = 2In − Mk = In + mkeTk , (3.36)

where (mieTi)(mjeTj) are equal to the null matrix if i "= j. As a consequence

A = M−1
1 M−1

2 . . .M−1
n−1U

= (In + m1eT1)(In + m2eT2) . . . (In + mn−1eTn−1)U

=

(

In +
n−1∑

i=1

mieTi

)

U

=





1 0 0

m21 1
...

... m32
. . .

...

...
...

. . . 0

mn1 mn2 . . . mn,n−1 1





U.

(3.37)

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 73

and defining

Mk =





1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 1 0 0
0 −mk+1,k 1 0
...

...
...

...
. . .

...
0 . . . −mn,k 0 . . . 1





= In − mkeTk

as the k-th Gaussian transformation matrix, one finds out that

(Mk)ip = δip − (mkeTk)ip = δip −mikδkp, i, p = 1, . . . , n.

On the other hand, from (3.31) we have that

a(k+1)
ij = a(k)

ij −mikδkka
(k)
kj =

n∑

p=1

(δip −mikδkp)a
(k)
pj , i, j = k + 1, . . . , n,

or, equivalently,

A(k+1) = MkA(k). (3.35)

As a consequence, at the end of the elimination process the matrices Mk,
with k = 1, . . . , n− 1, and the matrix U have been generated such that

Mn−1Mn−2 . . .M1A = U.

The matrices Mk are unit lower triangular with inverse given by

M−1
k = 2In − Mk = In + mkeTk , (3.36)

where (mieTi)(mjeTj) are equal to the null matrix if i "= j. As a consequence

A = M−1
1 M−1

2 . . .M−1
n−1U

= (In + m1eT1)(In + m2eT2) . . . (In + mn−1eTn−1)U

=

(

In +
n−1∑

i=1

mieTi

)

U

=





1 0 0

m21 1
...

... m32
. . .

...

...
...

. . . 0

mn1 mn2 . . . mn,n−1 1





U.

(3.37)

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 73

and defining

Mk =





1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 1 0 0
0 −mk+1,k 1 0
...

...
...

...
. . .

...
0 . . . −mn,k 0 . . . 1





= In − mkeTk

as the k-th Gaussian transformation matrix, one finds out that

(Mk)ip = δip − (mkeTk)ip = δip −mikδkp, i, p = 1, . . . , n.

On the other hand, from (3.31) we have that

a(k+1)
ij = a(k)

ij −mikδkka
(k)
kj =

n∑

p=1

(δip −mikδkp)a
(k)
pj , i, j = k + 1, . . . , n,

or, equivalently,

A(k+1) = MkA(k). (3.35)

As a consequence, at the end of the elimination process the matrices Mk,
with k = 1, . . . , n− 1, and the matrix U have been generated such that

Mn−1Mn−2 . . .M1A = U.

The matrices Mk are unit lower triangular with inverse given by

M−1
k = 2In − Mk = In + mkeTk , (3.36)

where (mieTi)(mjeTj) are equal to the null matrix if i "= j. As a consequence

A = M−1
1 M−1

2 . . .M−1
n−1U

= (In + m1eT1)(In + m2eT2) . . . (In + mn−1eTn−1)U

=

(

In +
n−1∑

i=1

mieTi

)

U

=





1 0 0

m21 1
...

... m32
. . .

...

...
...

. . . 0

mn1 mn2 . . . mn,n−1 1





U.

(3.37)

Once the matrices L and U have been computed, solving the linear
system consists only of solving successively the two triangular systems:

74 3. Direct Methods for the Solution of Linear Systems

Defining L = (Mn−1Mn−2 . . .M1)−1 = M−1
1 . . .M−1

n−1, it follows that

A = LU.

We notice that, due to (3.37), the subdiagonal entries of L are the multi-
pliers mik produced by GEM, while the diagonal entries are equal to one.

Once the matrices L and U have been computed, solving the linear system
consists only of solving successively the two triangular systems

Ly = b

Ux = y.

The computational cost of the factorization process is obviously the same
as that required by GEM.

The following result establishes a link between the leading dominant
minors of a matrix and its LU factorization induced by GEM.

Theorem 3.4 Let A ∈ Rn×n. The LU factorization of A with lii = 1 for
i = 1, . . . , n exists and is unique iff the principal submatrices Ai of A of
order i = 1, . . . , n− 1 are nonsingular.

Proof. The existence of the LU factorization can be proved following the steps
of the GEM. Here we prefer to pursue an alternative approach, which allows for
proving at the same time both existence and uniqueness and that will be used
again in later sections.

Let us assume that the leading minors Ai of A are nonsingular for i = 1, . . . , n−
1 and prove, by induction on i, that under this hypothesis the LU factorization
of A(= An) with lii = 1 for i = 1, . . . , n, exists and is unique.

The property is obviously true if i = 1. Assume therefore that there exists an
unique LU factorization of Ai−1 of the form Ai−1 = L(i−1)U(i−1) with l(i−1)

kk = 1
for k = 1, . . . , i − 1, and show that there exists an unique factorization also for
Ai. We partition Ai by block matrices as

Ai =




Ai−1 c

dT aii





and look for a factorization of Ai of the form

Ai = L(i)U(i) =




L(i−1) 0

lT 1








U(i−1) u

0T uii



 , (3.38)

having also partitioned by blocks the factors L(i) and U(i). Computing the prod-
uct of these two factors and equating by blocks the elements of Ai, it turns out
that the vectors l and u are the solutions to the linear systems L(i−1)u = c,
lTU(i−1) = dT .

LU implementation

A. Glatz: Computational Physics 22

Since L is a lower triangular matrix with diagonal entries equal to 1
and U is upper triangular, it is possible (and convenient) to store the
LU factorization directly in the same memory area that is occupied
by the matrix A. More precisely, U is stored in the upper triangular
part of A (including the diagonal), whilst L occupies the lower
triangular portion of A (the diagonal entries of L are not stored since
they are implicitly assumed to be 1).

MatLab implementation

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 77

3.3.3 Implementation of LU Factorization
Since L is a lower triangular matrix with diagonal entries equal to 1 and U
is upper triangular, it is possible (and convenient) to store the LU factor-
ization directly in the same memory area that is occupied by the matrix A.
More precisely, U is stored in the upper triangular part of A (including the
diagonal), whilst L occupies the lower triangular portion of A (the diagonal
entries of L are not stored since they are implicitly assumed to be 1).

A coding of the algorithm is reported in Program 4. The output matrix
A contains the overwritten LU factorization.
Program 4 - lu kji : LU factorization of matrix A. kji version

function [A] = lu kji (A)
[n,n]=size(A);
for k=1:n-1

A(k+1:n,k)=A(k+1:n,k)/A(k,k);
for j=k+1:n, for i=k+1:n

A(i,j)=A(i,j)-A(i,k)*A(k,j);
end, end

end

This implementation of the factorization algorithm is commonly referred
to as the kji version, due to the order in which the cycles are executed.
In a more appropriate notation, it is called the SAXPY − kji version,
due to the fact that the basic operation of the algorithm, which consists of
multiplying a scalar A by a vector X, summing another vector Y and then
storing the result, is usually called SAXPY (i.e. Scalar A X P lus Y).

The factorization can of course be executed by following a different order.
In general, the forms in which the cycle on index i precedes the cycle on
j are called row-oriented, whilst the others are called column-oriented. As
usual, this terminology refers to the fact that the matrix is accessed by
rows or by columns.

An example of LU factorization, jki version and column-oriented, is given
in Program 5. This version is commonly called GAXPY − jki, since the
basic operation (a product matrix-vector), is called GAXPY which stands
for Generalized sAXPY (see for further details [DGK84]). In the GAXPY
operation the scalar A of the SAXPY operation is replaced by a matrix.
Program 5 - lu jki : LU factorization of matrix A. jki version

function [A] = lu jki (A)
[n,n]=size(A);
for j=1:n

for k=1:j-1, for i=k+1:n
A(i,j)=A(i,j)-A(i,k)*A(k,j);

end, end
for i=j+1:n, A(i,j)=A(i,j)/A(j,j); end

end

Special cases

A. Glatz: Computational Physics 23

In simulations the matrix A is often sparse, i.e., most elements zero.
In particular the have a band structure with finite diagonal elements and a few
finite off-diagonals.

Tridiagonal matrices:
(occur e.g. when discretizing
gradients and Laplacians)

Then

with

3.7 Banded Systems 91

3.7.1 Tridiagonal Matrices
Consider the particular case of a linear system with nonsingular tridiagonal
matrix A given by

A =





a1 c1 0
b2 a2

. . .
. . . cn−1

0 bn an




.

In such an event, the matrices L and U of the LU factorization of A are
bidiagonal matrices of the form

L =





1 0
β2 1

.
0 βn 1




U =





α1 c1 0
α2

. . .

. . . cn−1

0 αn




.

The coefficients αi and βi can easily be computed by the following relations

α1 = a1, βi =
bi

αi−1
, αi = ai − βici−1, i = 2, . . . , n. (3.53)

This is known as the Thomas algorithm and can be regarded as a particular
instance of the Doolittle factorization, without pivoting. When one is not
interested in storing the coefficients of the original matrix, the entries αi

and βi can be overwritten on A.
The Thomas algorithm can also be extended to solve the whole tridi-

agonal system Ax = f . This amounts to solving two bidiagonal systems
Ly = f and Ux = y, for which the following formulae hold

(Ly = f) y1 = f1, yi = fi − βiyi−1, i = 2, . . . , n, (3.54)

(Ux = y) xn =
yn
αn

, xi = (yi − cixi+1) /αi, i = n− 1, . . . , 1. (3.55)

The algorithm requires only 8n − 7 flops: precisely, 3(n − 1) flops for the
factorization (3.53) and 5n− 4 flops for the substitution procedure (3.54)-
(3.55).

As for the stability of the method, if A is a nonsingular tridiagonal matrix
and L̂ and Û are the factors actually computed, then

|δA| ≤ (4u + 3u2 + u3)|L̂| |Û|,

3.7 Banded Systems 91

3.7.1 Tridiagonal Matrices
Consider the particular case of a linear system with nonsingular tridiagonal
matrix A given by

A =





a1 c1 0
b2 a2

. . .
. . . cn−1

0 bn an




.

In such an event, the matrices L and U of the LU factorization of A are
bidiagonal matrices of the form

L =





1 0
β2 1

.
0 βn 1




U =





α1 c1 0
α2

. . .

. . . cn−1

0 αn




.

The coefficients αi and βi can easily be computed by the following relations

α1 = a1, βi =
bi

αi−1
, αi = ai − βici−1, i = 2, . . . , n. (3.53)

This is known as the Thomas algorithm and can be regarded as a particular
instance of the Doolittle factorization, without pivoting. When one is not
interested in storing the coefficients of the original matrix, the entries αi

and βi can be overwritten on A.
The Thomas algorithm can also be extended to solve the whole tridi-

agonal system Ax = f . This amounts to solving two bidiagonal systems
Ly = f and Ux = y, for which the following formulae hold

(Ly = f) y1 = f1, yi = fi − βiyi−1, i = 2, . . . , n, (3.54)

(Ux = y) xn =
yn
αn

, xi = (yi − cixi+1) /αi, i = n− 1, . . . , 1. (3.55)

The algorithm requires only 8n − 7 flops: precisely, 3(n − 1) flops for the
factorization (3.53) and 5n− 4 flops for the substitution procedure (3.54)-
(3.55).

As for the stability of the method, if A is a nonsingular tridiagonal matrix
and L̂ and Û are the factors actually computed, then

|δA| ≤ (4u + 3u2 + u3)|L̂| |Û|,

3.7 Banded Systems 91

3.7.1 Tridiagonal Matrices
Consider the particular case of a linear system with nonsingular tridiagonal
matrix A given by

A =





a1 c1 0
b2 a2

. . .
. . . cn−1

0 bn an




.

In such an event, the matrices L and U of the LU factorization of A are
bidiagonal matrices of the form

L =





1 0
β2 1

.
0 βn 1




U =





α1 c1 0
α2

. . .

. . . cn−1

0 αn




.

The coefficients αi and βi can easily be computed by the following relations

α1 = a1, βi =
bi

αi−1
, αi = ai − βici−1, i = 2, . . . , n. (3.53)

This is known as the Thomas algorithm and can be regarded as a particular
instance of the Doolittle factorization, without pivoting. When one is not
interested in storing the coefficients of the original matrix, the entries αi

and βi can be overwritten on A.
The Thomas algorithm can also be extended to solve the whole tridi-

agonal system Ax = f . This amounts to solving two bidiagonal systems
Ly = f and Ux = y, for which the following formulae hold

(Ly = f) y1 = f1, yi = fi − βiyi−1, i = 2, . . . , n, (3.54)

(Ux = y) xn =
yn
αn

, xi = (yi − cixi+1) /αi, i = n− 1, . . . , 1. (3.55)

The algorithm requires only 8n − 7 flops: precisely, 3(n − 1) flops for the
factorization (3.53) and 5n− 4 flops for the substitution procedure (3.54)-
(3.55).

As for the stability of the method, if A is a nonsingular tridiagonal matrix
and L̂ and Û are the factors actually computed, then

|δA| ≤ (4u + 3u2 + u3)|L̂| |Û|,

Thomas algorithm O(k n) algorithm
(k number of finite off-diagonals)

Lab today & Thursday

A. Glatz: Computational Physics 24

Implement a GE solver for the stationary
inhomogeneous heat (diffusion) equation
• use Gaussian profile and parameters given above
• use rectangular heat sink in the center with depth
𝜽 and width a, for T0<TN, T0>TN, T0=TN

• N=10, 100, 1000

