Computational Physics - PHYS 410/510

Spring 2025

Department of Physics - Northern Illinois University Prof. Andreas Glatz

www.aglatz.net/teaching/compphys S2025

Homework

due 2025-04-24

Info

final project presentation: Thursday, April 24, 2025, 9:30

Program codes should be mailed to: aglatz@niu.edu (see also website). Other problem solutions can be handed in or mailed as well. Problems with points marked by * are for extra credit.

I. ISING MODEL [30(+5*)+30+10* PTS]

Here we consider the Ising model on a two-dimensional periodic grid defined by the Hamiltonian:

$$H = -J \sum_{\langle (i,j), (k,l) \rangle} \sigma_{i,j} \sigma_{k,l} - h \sum_{(i,j)} \sigma_{i,j} ,$$

where $(i,j) \in [0,\ldots,N_x-1] \times [0,\ldots,N_y-1]$ index the x,y coordinates of the grid points and $\langle (i,j),(k,l) \rangle$ denotes the sum over all grid points and for each grid point over its 4 nearest neighbors (NN), i.e., $\sum_{\langle (i,j),(k,l) \rangle} = \sum_{(i,j)} \sum_{(k,l) \in \mathrm{NN}(i,j)} \sum_{(k$

$$m = \frac{M}{N_x N_y} = \langle \sigma_{i,j} \rangle \equiv \frac{1}{N_x N_y} \sum_{(i,j)} \sigma_{i,j} .$$

If a single spin $\sigma_{i,j}$ flips: $\sigma_{i,j} \to -\sigma_{i,j}$, the total system energy changes by

$$\Delta E = 2J\sigma_{i,j}(\sigma_{i+1,j} + \sigma_{i-1,j} + \sigma_{i,j+1} + \sigma_{i,j-1}) + 2h\sigma_{i,j}$$

and magnetization by $\Delta M = -2\sigma_{i,j} = N_x N_y \Delta m$.

Here we fix J=0.5 and mostly h=0.

For the initial condition you can either use random spins or aligned spins (ferromagnetic configuration). Calculate E and m for the initial condition and update both using ΔE and Δm above whenever a new configuration is accepted.

After a steady state is reached you should calculate the observables: $\langle E \rangle_c$, $\langle E^2 \rangle_c$, $|\langle m \rangle_c|$, and $\langle m^2 \rangle_c$, where $\langle . \rangle_c$ is the average over accepted configurations.

From these you get the susceptibility

$$\chi = (\langle m^2 \rangle_c - \langle m \rangle_c^2) / (k_B T)$$

and heat capacity

$$c_h/k_B = (\langle E^2 \rangle_c - \langle E \rangle_c^2)/(k_B T)^2$$
.

a) Implement the Metropolis algorithm for the Ising model using the above information and protocol given in the lecture. It might be useful to use a linear array instead of a two dimensional array with index $k=i+jN_x$ ($i=k \mod N_x$, $j=k \div N_x$, where \div is the integer division). For the 'sweeps' (i.e., N_xN_y trial configurations) go through all sites systematically, use randomly selected sites, or all systematically with permutation array which is shuffled occasionally (*: 5 extra points for the last option).

- b) Run your code $N_x=N_y=5,20,50,100$ and reproduce the results for $\langle E\rangle_c\left(T\right)$ (with error), $|\langle m\rangle_c\left(T\right)|$, $c_h(T)$, and $\chi(T)$. Choose your initial and intermediate equilibration sweep numbers the latter after temperature change such that steady states are reached. Only then do the configuration averages for at least 10^5 accepted configurations. Choose about 100 equidistant temperature changes (between $k_BT=0.03$ and $k_BT=3$). Compare to the Onsager solution.
- c) Rerun the above for $N_x=N_y=50$ only with h=0.1.