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Binary representation
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®i=0 or 1

Hexadecimal numbers (base 16): {0,1,…,15} = {0,1,…,9,a,b,..,f}
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Floating point numbers
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Definitions
Bit = 0 or 1 
Byte = 8bits 
Word = Reals: 4 bytes (single precision) 
    8 bytes (double precision) 
  Integers: 1, 2, 4, or 8 byte signed
    1, 2, 4, or 8 byte unsigned 

IEEE single precision format:

2 CHAPTER 1. IEEE ARITHMETIC

1.5 4-bit unsigned integers as hex numbers

Decimal Binary Hex
1 0001 1
2 0010 2
3 0011 3
...

...
...

10 1010 a
...

...
...

15 1111 f

1.6 IEEE single precision format:

sz}|{
⇤
0

ez }| {
⇤
1
⇤
2
⇤
3
⇤
4
⇤
5
⇤
6
⇤
7
⇤
8

fz }| {
⇤
9
· · · · · · · ·⇤

31

# = (�1)s ⇥ 2e�127 ⇥ 1.f

where s = sign
e = biased exponent
p=e-127 = exponent
1.f = significand (use binary point)

“float=“

s – sign, e – biased exponent, 1.f – mantissa/significand



Single precision, special numbers
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1.7. SPECIAL NUMBERS 3

1.7 Special numbers

Smallest exponent: e = 0000 0000, represents denormal numbers (1.f ! 0.f) unless f=0
Largest exponent: e = 1111 1111, represents ±1, if f = 0

e = 1111 1111, represents NaN, if f 6= 0

Number Range: e = 1111 1111 = 28 - 1 = 255 reserved
e = 0000 0000 = 0 reserved

so, p = e - 127 is
1 - 127  p  254-127
-126  p  127

Smallest positive normal number
= 1.0000 0000 · · · · ·· 0000⇥ 2�126

' 1.2 ⇥ 10�38

bin: 0000 0000 1000 0000 0000 0000 0000 0000
hex: 00800000
MATLAB: realmin(’single’)

Largest positive number
= 1.1111 1111 · · · · ·· 1111⇥ 2127

= (1 + (1� 2�23))⇥ 2127

' 2128 ' 3.4⇥ 1038

bin: 0111 1111 0111 1111 1111 1111 1111 1111
hex: 7f7↵↵f
MATLAB: realmax(’single’)

Zero
bin: 0000 0000 0000 0000 0000 0000 0000 0000
hex: 00000000

Subnormal numbers
Allow 1.f ! 0.f (in software)
Smallest positive number = 0.0000 0000 · · · · · 0001 ⇥ 2�126

= 2�23 ⇥ 2�126 ' 1.4 ⇥ 10�45

1.8 Examples of computer numbers

What is 1.0, 2.0 & 1/2 in hex ?

1.0 = (�1)0 ⇥ 2(127�127) ⇥ 1.0
Therefore, s = 0, e = 0111 1111, f = 0000 0000 0000 0000 0000 000
bin: 0011 1111 1000 0000 0000 0000 0000 0000
hex: 3f80 0000

2.0 = (�1)0 ⇥ 2(128�127) ⇥ 1.0
Therefore, s = 0, e = 1000 0000, f = 0000 0000 0000 0000 0000 000
bin: 0100 00000 1000 0000 0000 0000 0000 0000
hex: 4000 0000



Double precision
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1.10. MACHINE EPSILON 5

1.10 Machine epsilon

Machine epsilon (✏mach) is the distance between 1 and the next largest number.
If 0  � < ✏mach/2, then 1 + � = 1 in computer math. Also since

x+ y = x(1 + y/x),

if 0  y/x < ✏mach/2, then x+ y = x in computer math.

Find ✏mach

The number 1 in the IEEE format is written as

1 = 20 ⇥ 1.000 . . . 0,

with 23 0’s following the binary point. The number just larger than 1 has a 1
in the 23rd position after the decimal point. Therefore,

✏mach = 2�23 ⇡ 1.192⇥ 10�7.

What is the distance between 1 and the number just smaller than 1? Here,
the number just smaller than one can be written as

2�1 ⇥ 1.111 . . . 1 = 2�1(1 + (1� 2�23)) = 1� 2�24

Therefore, this distance is 2�24 = ✏mach/2.
The spacing between numbers is uniform between powers of 2, with logarith-

mic spacing of the powers of 2. That is, the spacing of numbers between 1 and
2 is 2�23, between 2 and 4 is 2�22, between 4 and 8 is 2�21, etc. This spacing
changes for denormal numbers, where the spacing is uniform all the way down
to zero.

Find the machine number just greater than 5

A rough estimate would be 5(1+ ✏mach) = 5+5✏mach, but this is not exact. The
exact answer can be found by writing

5 = 22(1 +
1

4
),

so that the next largest number is

22(1 +
1

4
+ 2�23) = 5 + 2�21 = 5 + 4✏mach.

1.11 IEEE double precision format

Most computations take place in double precision, where round-o↵ error is re-
duced, and all of the above calculations in single precision can be repeated for
double precision. The format is
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63
“double=“

On average, on a PC of year 2012 build, calculations with double precision are 1.1–
1.6 times slower than with single precision.

Definition “Machine epsilon“ (𝜖mach): the distance between 1 and the next largest 
number. 

Max(double)=(1 + (1 − 2−52)) × 21023¼1.7976931348623157 × 10308

Min(double>0)=2−1022¼2.2250738585072014 × 10−308

Subnormal, min =2−1022−52¼4.9406564584124654 × 10−324

Between 252=4,503,599,627,370,496 and 253=9,007,199,254,740,992 the representable numbers are exactly the 
integers. For the next range, from 253 to 254, everything is multiplied by 2, so the representable numbers are the 
even ones, etc. Conversely, for the previous range from 251 to 252, the spacing is 0.5, etc.



Sources of errors
In any applied numerical computation, there are several key sources of error:

Modeling errors
i. Inexactness of the mathematical model for the underlying physical phenomenon.
ii. Errors in measurements of parameters entering the model.
These do not concern us too much. The latter is the domain of the experimentalists. 

Numerical errors
i. Round-off errors in computer arithmetic (finite numerical precision imposed by the 

computer).
ii. Discretization errors: continuous processes are replaced by discrete ones (e.g., summation to 

calculate an integral).
iii. “Termination” errors: infinite algorithms are terminated after a finite number of steps (e.g., 

iterations like xn+1=(xn+a/xn)/2 à sqrt(a), nà ∞).

The latter two are the true domain of numerical analysis and are a consequence of the fact that
• Most systems of equations are too complicated to solve explicitly
• Even with known analytic solution, directly obtaining the precise numerical values may be 

difficult
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Round-off error example
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Solve the quadratic equation with parameter b:

Yielding:

Now we look at the solution for b>0 and x>0, i.e.
For large bà∞:

6 CHAPTER 1. IEEE ARITHMETIC

# = (�1)s ⇥ 2e�1023 ⇥ 1.f

where s = sign
e = biased exponent
p=e-1023 = exponent
1.f = significand (use binary point)

1.12 Roundo↵ error example

Consider solving the quadratic equation

x2 + 2bx� 1 = 0,

where b is a parameter. The quadratic formula yields the two solutions

x± = �b±
p

b2 + 1.

Consider the solution with b > 0 and x > 0 (the x+ solution) given by

x = �b+
p

b2 + 1. (1.1)

As b ! 1,

x = �b+
p
b2 + 1

= �b+ b
p

1 + 1/b2

= b(
p

1 + 1/b2 � 1)

⇡ b

✓
1 +

1

2b2
� 1

◆

=
1

2b
.

Now in double precision, realmin ⇡ 2.2 ⇥ 10�308 and we would like x to be
accurate to this value before it goes to 0 via denormal numbers. Therefore,
x should be computed accurately to b ⇡ 1/(2 ⇥ realmin) ⇡ 2 ⇥ 10307. What
happens if we compute (1.1) directly? Then x = 0 when b2 + 1 = b2, or
1 + 1/b2 = 1. That is 1/b2 = ✏mach/2, or b =

p
2/
p
✏mach ⇡ 108.

For a subroutine written to compute the solution of a quadratic for a general
user, this is not good enough. The way for a software designer to solve this
problem is to compute the solution for x as

x =
1

b+
p
b2 + 1

.

In this form, if b2+1 = b2, then x = 1/2b which is the correct asymptotic form.
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In this form, if b2+1 = b2, then x = 1/2b which is the correct asymptotic form.

For x=realmin≈2.2 × 10−308 , we get b≈1/(2 × realmin) ≈ 2 × 10307

What would we get from (*)? x=0 , when b2≅1+b2 or 1+1/b2≅1
This happens when 1/b2=²mach/2 ! Or b=sqrt(2/²mach)≈108

(*)



…
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In the example this round-off error can be avoided by writing (*) as:

 This gives is gives the correct limit x≈1/(2b), when b2≅1+b2

6 CHAPTER 1. IEEE ARITHMETIC
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More examples, error propagation
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Let x and y be two real numbers and x* and y* their floating point approximations.

Now, let the computer calculate x-y : First, x and y are replaced by x* and y*. The final 
result is then (x*-*y*)*.

Example: x=301/2000≈.15050000 and y=301/2001≈.150424787
à The exact result is x-y=301/4002000≈.00007521239
Let us assume we have decimal floating point numbers with 4-digit mantissa, i.e.,
x*=.1505 and y*=.1504 à (x*-*y*)*=0.001

Example: coefficient error in polynomials of 10th degree: 
p(x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6)(x − 7)(x − 8)(x − 9)(x − 10) 

q(x) = p(x) + x5

à Coefficients of the x5 terms: −902055 in p and −902054 in q 
à relative error of these coefficients 10-5. However,  the roots of q are:
 1.0000027558, 1.99921, 3.02591, 3.82275, 
 5.24676 ± 0.751485 i , 7.57271 ± 1.11728 i , 9.75659 ± 0.368389 i.



Summation

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

• We have seen that summation of close numbers, but opposite signs can lead to loss 
of significance or Subtractive Cancelation

• Adding numbers with exponents different by more than the length of the mantissa 
results in round-off errors.

à This becomes worse when adding many numbers, which happens often in realistic 
simulations.

Example:  (1.0+*10-16)*=1.0 (even in double precision), as it should be
   Consider now the sum:

   and calculate it as: Sn=(((x1+x2)*+x3)*+x4+…)*
   For x1=1.0 and all other xi=10-16 gives even for n=1016 still Sn=1.0
   
   If the order of summation would be reversed, 
   we would get (more) accurately Sn≈2.0

floating point addition is not associative



How to improve accuracy?
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If the behavior of a sequence xi is know a priory one can change the order of summation:
• For a monotonically decaying positive/negative sequence, one can start with the last, 

smallest term

• If the sequence elements are saved in memory, sorting can improve accuracy

Otherwise, summing N numbers in sequence has a worst-case 
error that grows proportional to N  !

The root mean square error grows as for random xi like sqrt(N) (i.e. round-off errors form 
a random walk).

e.g. approximation of the geometric series (q<1): (?, demo)



Solution: running compensation
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In general our sequence is non-monotonic and 
cannot be sorted. 

In that case we need a better summation 
algorithm, which keeps track of error!

One option: The Kahan summation algorithm



Kahan summation algorithm
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double sum_kahan(double *f,int N)
{

double sum = f[0];
double c = 0.0,y,t;
int i;

for (i=1;i<N;i++) {
y = f[i] - c;

t = sum + y;

c = (t - sum) - y;
sum = t;
}

    return sum;
}

sum is initialized with first term
c: the running compensation

The compensation is subtracted from next 
element
Typically: sum is big, y small, so low-order 
digits of y are lost.
(t - sum) recovers the high-order part of y; 
subtracting y recovers -(low part of y) à c

(demo)



Kahan or not?
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Unfortunately, Kahan's algorithm requires four times the arithmetic 
and has a latency of four times a simple summation

However, Kahan's algorithm achieves error growth of O(1) for 
summing N numbers, which is only slightly worse than O(log(N)) 
error growth, achieved by pairwise summation: one recursively 
divides the set of numbers into two halves, sums each half, and then 
adds the two sums.

Pairwise summation has the advantage of requiring the same 
number of arithmetic operations as the naive summation and can 
be calculated in parallel. 

Warning: Be aware that an aggressively optimizing compiler could 
destroy the main purpose of Kahan summation!



Runtime, Big-O-notation
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Informal usage in Computer Science (and not in the mathematical sense):

An algorithm can be said to exhibit a growth rate on the order of a mathematical function if 
beyond a certain input size n, the function f(n) times a positive constant provides an upper 
bound or limit for the run-time of that algorithm. 
In other words, for a given input size n greater than some n0 and a constant c, the running 
time of that algorithm will never be larger than c × f(n). This concept is frequently expressed 
using Big-O-notation. For example, since the run-time of insertion sort grows quadratically 
as its input size increases, insertion sort can be said to be of order O(n²).

Big-O-notation is a convenient way to express the worst-case scenario for a given algorithm, 
although it can also be used to express the average-case — for example, the worst-case 
scenario for quicksort is O(n²), but the average-case run-time is O(n log n).

See also Computational complexity theory



Next lecture(s):
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Basic numeric algorithms
• Linear algebra, mostly linear systems
• Numerical integration
• Root finding 


