0
1
0
0
1
0
1
1
0
1
0
0
|
|
1
0
|

=) ~ - O
— and —

e i ot

0
00
‘131
o1

—

0

o o e e i ==
o o — O

1

10
01
10

ysics

1

IDIDODUDDtDDIOOID
LS S I < R = IS S o B leﬂoblolll

1

%&m.o.ﬁbl nw_wm.n”ul Lﬁ& R et

- O Ornrﬁ.clfd @ @ Dtntﬂ I:hr. - an

Ot O AP e om s
QO OO OO - 411010 Jret ot leo

T
X.«LL.L.A;lrrllllﬂ\lﬁ\n - —e OO

1

0

at!,‘er iP

B T -
I = T o Qi = St el BB ;o <

O A S A S H.)U G-D.:Be@,@g .u. nSl

0
1
0
1
9
9
'é
0
i
1
9
i
0

0

-

ﬂh.r. l%ol.m.@nﬂu .ﬂﬂ.mm.

- O O LA A D2

001001010 0110000

O - - O~ 0000 ™™ it O - OO0 "D OODO

1

0
1
§10

0

ondquse;d

1

C

0
o0
0Q

(7= K P8 S I oy 8L v [v [e |
o

1
0
1
1
0

0

0

01
11
1y
Oo

S
3
Q
B
e
S
g<
S
°
e
S
S
S~
S
O
=
)
O
&
o
S
©
<

0

Binary representation

1x2° 1x2* 0x2' 1x2° 1x2" 0x2? 1x2° 1x2*

1101.101 1

8 4 0 1] 05 0 0.125 0.0625
Binary point

8+4+0+1+0.5+0+0.125 + 0.0625 = 13.6875 (Base 10)

Hexadecimal numbers (base 16): {0,1,...,15} ={0,1,...,9,a,b,..,f}

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

REAL NUMBERS

| R |
| Ly

VT
FLOATING-POINT
NUMBERS

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

Floating point numbers

Definitions
Bit = Oorl
Byte = 8bits

Word = Reals: 4 bytes (single precision)
8 bytes (double precision)
Integers: 1, 2, 4, or 8 byte signed
1, 2, 4, or 8 byte unsigned

IEEE single precision format:
o f

e D EDDDDDD@E 0
123456738 31

r=(—1)%x 27147 x 1.f

s —sign, e — biased exponent, 1.f — mantissa/significand

Single precision, special numbers

Smallest exponent: e = 0000 0000, represents denormal numbers (1.f — 0.f) unless f=0
Largest exponent: e = 1111 1111, represents foo, if f =0
e = 1111 1111, represents NaN, if f #£ 0

Number Range: e= 11111111 =28 - 1 = 255 reserved
e = 0000 0000 =0 reserved
so, p=ce-127is
1-127 < p < 254-127
2126 < p < 127

Smallest positive normal number
= 1.0000 0000 - - - - - 0000x 27126
~ 1.2 x 1073
bin: 0000 0000 1000 0000 0000 0000 0000 0000
hex: 00800000
MATLAB: realmin(’single’)
Largest positive number
= 1.1111 1111 -+ - - - 1111x 2127
— (1 + (1 _ 2723)) % 2127
~ 2128 ~ 3.4 x 1038
bin: 0111 1111 0111 1111 1111 1111 1111 1111
hex: 77ttt
MATLAB: realmax(’single’)
Zero
bin: 0000 0000 0000 0000 0000 0000 0000 0000
hex: 00000000

Subnormal numbers
Allow 1.f — 0.f (in software)
Smallest positive number = 0.0000 0000 - - - - - 0001 x 27126
=272 x 27126 ~ 1.4 x 1074

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

Double precision

S

‘doute= 11O Dﬁm oot m|
0 1 2 5 6 7 8 91011 12 63

r=(—1)% x 2671023 » 1. f

On average, on a PC of year 2012 build, calculations with double precision are 1.1-
1.6 times slower than with single precision.

Max(double)=(1 + (1 — 27°2)) x 21023~1,7976931348623157 x 10308
Min(double>0)=2-1022~2.2250738585072014 x 10308

Subnormal, min =2-1022-5244 9406564584124654 x 107324

Between 2°2=4,503,599,627,370,496 and 2°3=9,007,199,254,740,992 the representable numbers are exactly the
integers. For the next range, from 233 to 2°4, everything is multiplied by 2, so the representable numbers are the
even ones, etc. Conversely, for the previous range from 2°! to 2°2, the spacing is 0.5, etc.

Definition “Machine epsilon” (€.,.1): the distance between 1 and the next largest
number.

Sources of errors

In any applied numerical computation, there are several key sources of error:

Modeling errors

i. Inexactness of the mathematical model for the underlying physical phenomenon.
ii. Errors in measurements of parameters entering the model.

These do not concern us too much. The latter is the domain of the experimentalists.

Numerical errors

i. Round-off errors in computer arithmetic (finite numerical precision imposed by the
computer).

ii. Discretization errors: continuous processes are replaced by discrete ones (e.g., summation to
calculate an integral).

iii. “Termination” errors: infinite algorithms are terminated after a finite number of steps (e.g.,
iterations like x,,;=(x,+a/x,)/2 =2 sqgrt(a), n=> o=).

The latter two are the true domain of numerical analysis and are a consequence of the fact that
* Most systems of equations are too complicated to solve explicitly

* Even with known analytic solution, directly obtaining the precise numerical values may be
difficult

Round-off error example

Solve the quadratic equation with parameter b:

22+ 2%r—-1=0

T4 :—b:l:\/bz—l—l
Now we look at the solution for b>0 and x>0, i.e. 2 = —b+ /b2 + 1 (*)
For large b—>ee: r=—b+b2+1
= —b+by/1+ 1/
=b(y/1+1/b2 —1)

|
b (14— 1
<+2b2)

1

20

Yielding:

For x=realmin=2.2 x 107398, we get b=1/(2 x realmin) = 2 x 10397

What would we get from (*)? x=0, when b2=1+b2 or 1+1/b?=1
This happens when 1/b%=¢,,,.+/2 ! Or b=sqrt(2/¢,,,.;)=108

In the example this round-off error can be avoided by writing (*) as:
1
b+ vVb* +1

This gives is gives the correct limit x=1/(2b), when b2=1+b?

X

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

More examples, error propagation

Let x and y be two real numbers and x* and y* their floating point approximations.

Now, let the computer calculate x-y : First, x and y are replaced by x* and y*. The final
result is then (x*-*y*)*,

Example: x=301/2000=.15050000 and y=301/2001=.150424787
- The exact result is x-y=301/4002000=.00007521239

Let us assume we have decimal floating point numbers with 4-digit mantissa, i.e.,
x*=.1505 and y*=.1504 - (x*-*y*)*=0.001

Example: coefficient error in polynomials of 10t degree:
p(x) = (x = 1)(x = 2)(x = 3)(x = 4)(x = 5)(x = 6)(x = 7)(x - 8)(x - 9)(x - 10)
a(x) = p(x) + x>
- Coefficients of the x°> terms: —902055 in p and -902054 in q
- relative error of these coefficients 10->. However, the roots of q are:
1.0000027558, 1.99921, 3.02591, 3.82275,
5.24676 +0.751485i, 7.57271 +£1.11728 i,9.75659 £+ 0.368389 i.

Summation

* We have seen that summation of close numbers, but opposite signs can lead to loss
of significance or Subtractive Cancelation

* Adding numbers with exponents different by more than the length of the mantissa
results in round-off errors.

— This becomes worse when adding many numbers, which happens often in realistic
simulations.

Example: (1.0+4*1016)*=1.0 (even in double precision), as it should be

Consider now the sum: .
i=1

and calculate it as: S =(((x1+X2) *+x3)*+x4+...)*
For x;=1.0 and all other x;=10-1 gives even for n=101° still S,=1.0

If the order of summation would be reversed,
we would get (more) accurately S,=2.0

floating point addition is not associative

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

How to improve accuracy?

If the behavior of a sequence x; is know a priory one can change the order of summation:
* For a monotonically decaying positive/negative sequence, one can start with the last,
smallest term

e.g. approximation of the geometric series (q<1): Z q"

(?, demo)

1—q

* If the sequence elements are saved in memory, sorting can improve accuracy

Otherwise, summing N numbers in sequence has a worst-case
error that grows proportional to N !

The root mean square error grows as for random x; like sqrt(N) (i.e. round-off errors form
a random walk).

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

Solution: running compensation

In general our sequence is non-monotonic and
cannot be sorted.
In that case we need a better summation
algorithm, which keeps track of error!

One option: The Kahan summation algorithm

Kahan summation algorithm

double sum_kahan(double *f,int N)

{
double sum = f[0];

double c=0.0,y,t;
inti;

for (i=1;i<N;i++) {
y=fli] - c;

t=sum+y;

c=(t-sum)-y;
sum =t;

}

return sum;

}

sum is initialized with first term
c: the running compensation

The compensation is subtracted from next
element

Typically: sum is big, y small, so low-order
digits of y are lost.

(t - sum) recovers the high-order part of y;
subtracting y recovers -(low part of y) 2 ¢

(demo)

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction

Kahan or not?

Unfortunately, Kahan's algorithm requires four times the arithmetic
and has a latency of four times a simple summation

However, Kahan's algorithm achieves error growth of O(1) for
summing N numbers, which is only slightly worse than O(log(N))
error growth, achieved by pairwise summation: one recursively
divides the set of numbers into two halves, sums each half, and then
adds the two sums.

Pairwise summation has the advantage of requiring the same
number of arithmetic operations as the naive summation and can
be calculated in parallel.

Warning: Be aware that an aggressively optimizing compiler could
destroy the main purpose of Kahan summation!

Runtime, Big-O-notation

Informal usage in Computer Science (and not in the mathematical sense):

An algorithm can be said to exhibit a growth rate on the order of a mathematical function if
beyond a certain input size n, the function f(n) times a positive constant provides an upper
bound or limit for the run-time of that algorithm.

In other words, for a given input size n greater than some n0 and a constant c, the running
time of that algorithm will never be larger than c x f(n). This concept is frequently expressed
using Big-O-notation. For example, since the run-time of insertion sort grows quadratically
as its input size increases, insertion sort can be said to be of order O(n?).

Big-O-notation is a convenient way to express the worst-case scenario for a given algorithm,
although it can also be used to express the average-case — for example, the worst-case
scenario for quicksort is O(n?), but the average-case run-time is O(n log n).

See also Computational complexity theory

Next lecture(s):

Basic numeric algorithms
* Linear algebra, mostly linear systems
* Numerical integration
* Root finding

