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Linear equation systems

Solving linear equation systems is a quite common task during a simulation.
Seemingly simple, there are many challenges to do so on a computer.

* m linear equations with n unknowns, x::
m

E CLijCCj:bi, iZl,...,m

Jj=1
* |n matrix form:

Ax =Db

where the coefficients a; form the matrix AcC™*", and the rhs b; the vector beC™.



Solution methods

Here we consider real square matrices with rank(A)=n, i.e., det(A)=0

_ 4
det(A)

Where A, is the determinant of the matrix obtained by replacing column j of A

by b. If this would be implemented, if would be an O((n+1)!) algorithm!!! Or take
1046 years to solve 50 equations on a modern computer (100Gflop/s)....

Formal solution (Cramer’s rule): X j ,7=1,....n

The problem to solve this equation system is related to the problem of inverting
a square matrix, since the solution can be written as

x=A"1lb



What methods exist to solve it?

alternatives to Cramer’s rule:

1. direct methods: yield the solution of the system in a finite
number of steps

2. iterative methods: require (theoretically) an infinite number
of steps.

The choice between a direct and an iterative method depends
* on the theoretical efficiency of the scheme

e the particular type of matrix

* on memory storage requirements

* on the architecture of the computer



Accuracy?

Warning: Solving a linear system by a numerical method
invariably leads to the introduction of rounding errors.
- We will discuss this in the chapter about linear stability.

Outlook: An important measure for the accuracy of the numerical
solution is the condition number of a matrix:

K(A) = [|A]l- |A7Y] > 1
For the Euclidean norm and symmetric, positive definite matrices:
K(A)z)\max/ )\min
with A, ..and A .. being the largest/smallest eigenvalue of A.

If the condition number is close to one, the matrix is well
conditioned =2 its inverse can be computed with good accuracy.



Direct methods

Triangular matrices

Consider the non-singular, lower triangular 3x3 matrix:
l11 0 0 1 bl
lo1 laa O T2 | = b2
31 l32 33 3 b3

> 1 =bi/ln,
Lo — (bz — 1215131)/522,
T3 = (bs — 3121 — l3272) /33
Can be extended to systems n x n: forward substitution algorithm
b1

lll

1—1
1 :
Ly — 7 bZ—E lijZUj . 222,...,71
g=1

Ir1 =

Y
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Equivalent for upper triangular matrix [Ux=b]: backward substitution

br,
Lpn = —,
U’nn
1 n
ZE’Z:— bz_ Zu?/]xj 9 Z:n_]_, ,1

Algorithms (MatLab code)
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Gaussian elimination (GE)

Gaussian Elimination:

1.

2.

Reduce Ax=b to an equivalent system (that is, having the same solution) of

form Ux=b
U: upper triangular matrix, b: updated right side vector.

The latter system can then be solved by backward substitution

Let us denote the original system by Alllx = b(%)

oD

Introduce the multipliers: mi = ﬁ i=2,3,....n
aiq
. . . 2 1 1 ..
Eliminate the unknown x; in a§j> = af;j) — mﬂagj), i,j=2,...,n,

the following rows i below row 1:
5 B = b — bV, i=2,... . n,

B 1 1 1) 7 - - B 1) 7
N R B 9 i<
0 a2 . P 2, (2
> o . : = . & ARy = pf2)
| 0 a%) aﬁ | R | bSE) |




Then eliminate x, from rows 3,...,n, etc.
In general after k-1 elimination steps, we have a system:

B 1 1
a§1) agQ)
0 ag)
A _ |
o ... 0 a®
0o ... 0 ol
And finally, weget: 1 @ () M1 r
y’ g CLll CL%22) Y .« e e CL%SL) xl
0 ay A2 T2
0 :
| 0 ag | L o

AFx =pk) 1 <k <n,

ay,, ]
2)

Ao,

(k)

akn

(k)

ann

0 ]
b5
: SUx=b

b

We assumed al).# 0 (i=1,...,n-1). These elements are called pivots.

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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GE Example

3x3 Hilbert matrix: ([ z + sm2 +

(A(l)X:b(l)) { Lfx +

m,,=1/2, m3;=1/3: A®Px=b®) ¢ 0 + Lz +

( 1
r1 + 522 -+

m3,=1: (A(3)X = b(g)) < 0 + ixg +

0+ 0 +

2 X3=1, x,=1, x;=1

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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pIVOts

GE only works if the pivots are finite.

There are classes of matrices, when GE is “safe”
* Ais diagonally dominant by rows

* Ais diagonally dominant by column

* Ais symmetric and positive definite

If zero (or small) pivots are encountered, one can reorder the
remaining rows of A® [blkl elements accordingly] in order to move
the largest (absolute value) element to the pivot position and
continue.



Pseudocode for GE with pivoting

for k =1 ... m:
//Find pivot for column k:
1 max := argmax (i1 =k ... m, abs(A[1, k]))
if A[i max, k] =0

error "Matrix 1s singular!"
swap rows (k, 1 max)
//Do for all rows below pivot:

for i =k + 1 ... m:
//Do for all remaining elements in current row:
for J =k ... n:
Ali, 3] =:= A[i, Jj] - Alk, J1 * (A[i, k]I / A[k, k])

//Fill lower triangular matrix with zeros:
Ali, k] :=0



LU decomposition

GE is equivalent to performing a factorization of the matrix A into
the product of two matrices, A=LU, with U=A,

 Land U do not depend on b and can therefore be used to solve
the linear system for different b.
This means a reduction of computation time to O(n?)

e Let us go back to the Hilbert matrix example to see how the

matrix L is constructed: 1 001 T 10 0
define: Mp=| -3 1 0]=|-mn 10
i —% 0 1 ) i —1ma31 0 1 i
1 3 3
indeed: MA=MAD =0 L L | =aA®
U

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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1 0 O 1 0
and My=]10 1 0[|=1]0 1
0 -1 1 0 —mag

therefore MsM A = AG) = U

A = (M:M;)"'U=LU

1

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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Once the matrices L and U have been computed, solving the linear
system consists only of solving successively the two triangular systems:

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction




LU implementation

Since L is a lower triangular matrix with diagonal entries equal to 1
and U is upper triangular, it is possible (and convenient) to store the
LU factorization directly in the same memory area that is occupied
by the matrix A. More precisely, U is stored in the upper triangular
part of A (including the diagonal), whilst L occupies the lower
triangular portion of A (the diagonal entries of L are not stored since

they are implicitly assumed to be 1).

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction
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One final remark on LU: If (partial) pivoting (exchange of rows) is used in GE a
corresponding permutation matrix, P, needs to be inserted in the factorization
of A, i.e.,

U=AM™ =M, P, _{...M;P;AD

Similarly for full pivoting, when also columns of the remaining sub-matrix are
exchanged in order to move the element with largest absolute value to the

pivot position.

Related factorizations:

e LDMT factorization: L, M" and D are lower triangular, upper triangular and
diagonal matrices, respectively (L does not need to have a “1” diagonal)

* This gives for symmetric matrices: M=L, i.e., a LDL factorization

* Cholesky factorization for symmetric and positive definite matrices: A=H'H,

where H is a unique upper triangular matrix with positive diagonal elements
* QR factorization for rectangular matrices: A = QR, with AeR™*" (m>n),

orthogonal matrix Q€R™*™M, and trapezoidal matrix RER™*" with zero rows
n+1,...,m --- important for eigenvalue calculation of square matrices.




Special cases

In simulations the matrix A is often sparse, i.e., most elements zero.
In particular the have a band structure with finite diagonal elements and a few

finite off-diagonals.

- . a1 o 0 |
Tridiagonal matrices:
(occur e.g. when discretizing  , _ by as
gradients and Laplacians) Ch1
L O bn a/n -
Then [ 1 0 | [ a1 o 0
62 1 a9 .
L — U f—
Cn—1
0 s ] 0 o
with bi '
a1 = aq, ﬁz: , ai:ai—ﬁici_l,zzz...,n.
;1
Thomas algorithm O(k n) algorithm

(k number of finite off-diagonals)

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction



Iterative methods

* |terative methods formally yield the solution x of a linear system after an
infinite number of steps.

* At each step they require the computation of the residual of the system.

* |n the case of a full matrix, their computational cost is therefore of the order
of n? operations for each iteration, to be compared with an overall cost of the
order of 2/3n3 operations needed by direct methods.

- lterative methods can therefore become competitive with direct methods
provided the number of iterations that are required to converge (within a
prescribed tolerance) is either independent of n or scales sub-linearly with
respect to n.

(Some) iterative methods can be parallelized!
Direct methods are typically sequential, and each step depends on
the result of the previous one.



Main concept

The basic idea of iterative methods is to construct a sequence of
vectors x(k) that enjoy the property of convergence:

x = lim x*)
k— oo
where x is the solution of Ax=b
The iteration processes is stopped when  ||x(™) — x|| < ¢

with a prescribed tolerance e.
Problem with this conditions: Impractical, since we do not know x.

General scheme:
X(O) — fO (A7 b)7

x(t) = £ (x(™) x(n=1  x(r=m) A b)), for n > m




Definitions

X(O> — fO(A7 b)a

x(nt+1) = fn+1(x(”), x(n=1) . x(n=m) A b), for n > m

In this general scheme f; and x(™),..., x%) are given functions and vectors,
respectively.

The number of steps which the current iteration depends on is called the order
of the method.

If the functions f; are independent of the step index i, the method is called
stationary, otherwise it is non-stationary.

Finally, if f. depends linearly on x(, ..., xiM), the method is called linear,
otherwise it is nonlinear.




Linear iterative methods

Here we focus on stationary, linear iterative methods of order one.
e general technique: additive splitting of matrix A of form A=P-N

P and N are two suitable matrices and P is nonsingular
 Piscalled preconditioning matrix or preconditioner

Here we consider an iteration of the form

x(0) given, xF+tD =Bx(F) +f k>0

* Bisannxnsquare matrix called the iteration matrix
* fisavector obtained from the right-hand side b
* Consistent with Ax=b if f=(I-B)Alb

Using the above splitting of A, we calculate x for k>0, solving
Px(FtD = Nx(*) + b, k>0
i.e., B=PIN and f=P1b



This scheme can be written as x(k+1) — (k) | p=1.(k)
with the residual rk) —p - Ax®)

We note that:

1. P should be chosen such that it can be easily inverted

2. If P=A and N=0, the iteration would converge in one step

3. The residual is a measure of how good x(k) approximates the real solution x



Jacobi iteration

If the diagonal entries of A are nonzero, we can single out in each equation the
corresponding unknown on the diagonal and write:

n

1 ,
Ty = — bi— E Qi Ty | z:l,...,n

Qi —
J#i
In the Jacobi method x(k*1) is computed by [x(%) can be an arbitrary initial guess]

1 n
gD — bi—Zaijw§k) , 1=1,...,n

' Qg5 ,
ji
This corresponds to a splitting: P=D, N=D-A=E+F,
* D is adiagonal matrix having the diagonal elements of A
* Eisthe lower triangular matrix with elements: e;=-a; for i>j, 0 else

* Fthe upper triangular matrix: f;=-a; for i<j, 0 else

A generalization is the over-relaxation method (JOR): xEFD — x(*) 4 ;D=1p#)

n here wis a
bel) W k k : where ¢
:UE ) X b, — g aijazg- '+ (1-— w):cg ), t=1,...,n  relaxation parameter

Qig -1 0<w< 1
JFi



Remarks:

In the Jacobi method P=D can be easily inverted

Each iteration step required therefore only one matrix multiplication, i.e., Ax(k
Therefore it can be easily parallelized

The method converges when A is strictly diagonally dominant, i.e., |a;| is larger than
the sum of all other absolute values of the elements in the row

Standard convergence criterion: p(D-IN)<1 (p is the spectral radius, i.e., the largest
absolute value of this eigenvalues)

Jacobi is convergent if A and (2D-A) are symmetric and positive definite

The above convergence criterions are not always necessary for convergence...



Jacobi algorithm

Choose an initial guess x© to the solution
k=0
check if convergence is reached, e.g., | |r(k) | | <€
while convergence not reached do
fori:=1 step until ndo
c=0
forj:=1 step until n do
if j #i then
o =0+ a; XK
end if
end (j-loop)
xik+l) = (b; - o)/ a
end (i-loop)
check if convergence is reached
k=k+1
loop (while convergence condition not reached)



Gauss-Seidel iteration

The Gauss-Seidel method differs from the Jacobi method in the fact that at the (k+1)-th step
the available values of x;k*1) are being used to update the solution

1—1 n
(k+1) 1 (k+1) (k) .
x; a—h{b¢2aijmj —.Z Qi T; ], 1=1,...,n
7=1 j=1+1
i.e., P=D-E, N=F
The related over-relaxation iteration (SOR) is

1—1 n
$§k+1) _ i |:bi _ Z@@_ﬁ;ﬁﬂ) _ Z aij$§k):| F(1— w)xgk)

a
v j=1 j=i+1

—1
(B D) _ (k) (lD ~ E) L)
w

Remarks:

e @GS is monotonically convergent if A is symmetric and positive definite

* @GS converges also for the same criteria as Jacobi

e GSis not parallelizable

* @GS has less memory requirements than Jacobi, since the current iteration can
overwrite elements of the previous approximation



Preconditioners

The spectral radius of the iteration matrix B is important for the convergence of the

iterative solver. Using the expressions above, the original problem is (obviously) equivalent
to solving

P 1Ax =P b

This is called a preconditioned system, where P is the preconditioning matrix or left
preconditioner. Right and centered preconditioners can be introduced as well:

AP 'y =b, y=Px
P, 'APL'y =P;'b, y=Pgx

Since the preconditioner acts on the spectral radius of the iteration matrix, it would be
useful to pick up, for a given linear system, an optimal preconditioner, i.e., a

preconditioner which is able to make the number of iterations required for convergence
independent of the size of the system.

Notice that the choice P=A is optimal but, trivially, “inefficient”.

Note: A diagonal preconditioner is generally effective if A is symmetric positive definite




Stationary vs. non-stationary methods

Define the iteration matrix Rp=1-P'A

With a relaxation (or acceleration) parameter o we get the following stationary Richardson
methOd X(k+1) _ X(kz) 4+ OéP_lI'(k), k Z 0

If we allow « to be dependent on the iteration index, we get the nonstationary Richardson
method or semi-iterative method

xFHD) = x(B) 4 o, P~ 1p(R) k>0

With iteration matrix at step ki R(ay,) =1 — P LA

Jacobi and GS are stationary Richardson methods with a=1
For practical applications this is rewritten: zk) = P-1¢(k) (the so-called preconditioned
residual) =2 x(+1) = x(k) + a,zk) and rk+1) = b — Ax(k+1) = plk) —q Az(K),
A nonstationary Richardson method requires the following operations:
* solve the linear system Pz = r(k)
» compute the acceleration parameter oy
» update the solution x(+1) = x(k) + g z(k)
* update the residual rlk*1) = plk) — o, Az(k)



Gradient Method

For symmetric positive definite matrices, any optimal acceleration parameter can be

dynamically computed at each step k.
First, note that solving system Ax=b is equivalent to finding the minimizer x€R" of the

quadratic forl n

This is also called the energy of system Ax=b, calculating the gradient gives:

Va(y) = 5 (AT +Aly ~b=Ay b e Vo(x)=0

Problem:
* determine the minimizer x of @ starting from a point x(?°cR"and,

» select suitable directions d®) along which gets us as close as possible to the solution x.

Where o is the length along the step d(k,
The most natural idea: take the descent direction of maximum slope VO(x)), which yields
the gradient method or steepest descent method.

Vo(xF)) = AxF) —b = —r(k) > dk) =pk)



To compute the parameter ay let us write explicitly ®(x*1) as a function of parameter a:

o (x*+1)) = %(X(k) + ar™)TA(x® + ar®) — (x® 4 ar®)Tp
Differentiating with respect to a and setting it equal to zero, yields

r(0)T (k)
T ®T ArK)
This non-stationary Richardson method is called gradient method with dynamic parameter
or just gradient method.:

«

r(k) — p — Ax(k)

()T (k)
BT AP

Ak

For a symmetric, positive definite matrix the gradient method is convergent for any choice
of x(0



Conjugate gradient method

We can calculate the local minimum for @ along any direction p and find «;, as the value

minimizing @(xM+a p®), yielding -
p® Ty k)

~ p®TAp®)
Instead of just using the gradient of @ as direction (i.e. the residual), we now use the
definition of an optimal direction x*) with respect to a direction p= 0

g

o(x*) <ox® +Ap), VYAeR
From this it follows that p must be orthogonal to rl¥, since oo
O

For an iteration x(x*=x(k+q to preserve this optimality we need also P’ Aq =0
Which means the descent directions must be mutually A-orthogonal or A-conjugate

(X(k))uzo —0 iff pT(r(k)) —0



These conjugate directions can be constructed, yielding finally the iteration:
p® 7 ®)
~ p®TAp®)

077

pb+1) — 1)) _ o, Ap(®)

(Ap(k))TI.(k:+1)
(Ap®)Tp®

plk+D) = p(k+1) _ g, 1(k)

B =

This is the CG method, with r(® = b-Ax(® and p(© = r(0

For a symmetric and positive definite matrix, any method which employs conjugate
directions to solve Ax=b terminates after at most n steps, yielding the exact solution.
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Krylov Subspace Iterations

No covered here, but sometimes useful.
These methods requires saving the vectors of the Krylov subspace of order m:

K. (A;v) = span {V, Av,... ,Am_lv}

And solving an iteration
x*) = xO© 4 g1 (A)r©®

And g,.; being a appropriately chosen polynomial.
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Next lecture:

* Numerical integration
* Root finding
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