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Linear equation systems
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Solving linear equation systems is a quite common task during a simulation.
Seemingly simple, there are many challenges to do so on a computer.

• m linear equations with n unknowns, xi:

• In matrix form:

where the coefficients aij form the matrix A2Cm£n, and the rhs bi the vector b2Cm.



Solution methods
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Here we consider real square matrices with rank(A)=n, i.e., det(A)¹0

Formal solution (Cramer’s rule): 

Where ¢j is the determinant of the matrix obtained by replacing column j of A 
by b.  If this would be implemented, if would be an O((n+1)!) algorithm!!! Or take 
1046 years to solve 50 equations on a modern computer (100Gflop/s)….

The problem to solve this equation system is related to the problem of inverting 
a square matrix, since the solution can be written as

  x=A-1b



What methods exist to solve it?
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alternatives to Cramer’s rule:
1. direct methods: yield the solution of the system in a finite 

number of steps
2. iterative methods: require (theoretically) an infinite number 

of steps.

The choice between a direct and an iterative method depends
• on the theoretical efficiency of the scheme
• the particular type of matrix
• on memory storage requirements 
• on the architecture of the computer



Accuracy?
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Warning: Solving a linear system by a numerical method 
invariably leads to the introduction of rounding errors. 
à We will discuss this in the chapter about linear stability.

Outlook: An important measure for the accuracy of the numerical 
solution is the condition number of a matrix:
 

For the Euclidean norm and symmetric, positive definite matrices: 
K(A)=¸max/¸min

with ¸max and ¸min being the largest/smallest eigenvalue of A. 

If the condition number is close to one, the matrix is well 
conditioned à its inverse can be computed with good accuracy.



Direct methods
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Triangular matrices
Consider the non-singular, lower triangular 3x3 matrix:

3.2 Solution of Triangular Systems 65

3.2 Solution of Triangular Systems

Consider the nonsingular 3×3 lower triangular system
⎡

⎣
l11 0 0
l21 l22 0
l31 l32 l33

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ =

⎡

⎣
b1
b2
b3

⎤

⎦ .

Since the matrix is nonsingular, its diagonal entries lii, i = 1, 2, 3, are
non vanishing, hence we can solve sequentially for the unknown values
xi, i = 1, 2, 3 as follows

x1 = b1/l11,
x2 = (b2 − l21x1)/l22,
x3 = (b3 − l31x1 − l32x2)/l33.

This algorithm can be extended to systems n × n and is called forward
substitution. In the case of a system Lx=b, with L being a nonsingular
lower triangular matrix of order n (n ≥ 2), the method takes the form

x1 =
b1
l11

,

xi =
1
lii

⎛

⎝bi −
i−1∑

j=1

lijxj

⎞

⎠ , i = 2, . . . , n.
(3.22)

The number of multiplications and divisions to execute the algorithm is
equal to n(n+1)/2, while the number of sums and subtractions is n(n−1)/2.
The global operation count for (3.22) is thus n2 flops.

Similar conclusions can be drawn for a linear system Ux=b, where U
is a nonsingular upper triangular matrix of order n (n ≥ 2). In this case
the algorithm is called backward substitution and in the general case can
be written as

xn =
bn
unn

,

xi =
1
uii

⎛

⎝bi −
n∑

j=i+1

uijxj

⎞

⎠ , i = n− 1, . . . , 1.
(3.23)

Its computational cost is still n2 flops.

3.2.1 Implementation of Substitution Methods
Each i-th step of algorithm (3.22) requires performing the scalar product
between the row vector L(i, 1 : i − 1) (this notation denoting the vector
extracted from matrix L taking the elements of the i-th row from the first

3.2 Solution of Triangular Systems 65

3.2 Solution of Triangular Systems

Consider the nonsingular 3×3 lower triangular system
⎡

⎣
l11 0 0
l21 l22 0
l31 l32 l33

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ =

⎡

⎣
b1
b2
b3

⎤

⎦ .

Since the matrix is nonsingular, its diagonal entries lii, i = 1, 2, 3, are
non vanishing, hence we can solve sequentially for the unknown values
xi, i = 1, 2, 3 as follows

x1 = b1/l11,
x2 = (b2 − l21x1)/l22,
x3 = (b3 − l31x1 − l32x2)/l33.

This algorithm can be extended to systems n × n and is called forward
substitution. In the case of a system Lx=b, with L being a nonsingular
lower triangular matrix of order n (n ≥ 2), the method takes the form

x1 =
b1
l11

,

xi =
1
lii

⎛

⎝bi −
i−1∑

j=1

lijxj

⎞

⎠ , i = 2, . . . , n.
(3.22)

The number of multiplications and divisions to execute the algorithm is
equal to n(n+1)/2, while the number of sums and subtractions is n(n−1)/2.
The global operation count for (3.22) is thus n2 flops.

Similar conclusions can be drawn for a linear system Ux=b, where U
is a nonsingular upper triangular matrix of order n (n ≥ 2). In this case
the algorithm is called backward substitution and in the general case can
be written as

xn =
bn
unn

,

xi =
1
uii

⎛

⎝bi −
n∑

j=i+1

uijxj

⎞

⎠ , i = n− 1, . . . , 1.
(3.23)

Its computational cost is still n2 flops.

3.2.1 Implementation of Substitution Methods
Each i-th step of algorithm (3.22) requires performing the scalar product
between the row vector L(i, 1 : i − 1) (this notation denoting the vector
extracted from matrix L taking the elements of the i-th row from the first

à

Can be extended to systems n × n: forward substitution algorithm
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O(n2) algorithm



…
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Equivalent for upper triangular matrix [Ux=b]: backward substitution

3.2 Solution of Triangular Systems 65
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Algorithms (MatLab code)

66 3. Direct Methods for the Solution of Linear Systems

to the (i-1)-th column) and the column vector x(1 : i − 1). The access to
matrix L is thus by row; for that reason, the forward substitution algorithm,
when implemented in the form above, is called row-oriented.

Its coding is reported in Program 1 (the Program mat square that is
called by forward row merely checks that L is a square matrix).

Program 1 - forward row : Forward substitution: row-oriented version

function [x]=forward row(L,b)
[n]=mat square(L); x(1) = b(1)/L(1,1);
for i = 2:n, x (i) = (b(i)-L(i,1:i-1)*(x(1:i-1))’)/L(i,i); end
x=x’;

To obtain a column-oriented version of the same algorithm, we take ad-
vantage of the fact that i-th component of the vector x, once computed,
can be conveniently eliminated from the system.

An implementation of such a procedure, where the solution x is over-
written on the right vector b, is reported in Program 2.
Program 2 - forward col : Forward substitution: column-oriented version

function [b]=forward col(L,b)
[n]=mat square(L);
for j=1:n-1,

b(j)= b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j);
end; b(n) = b(n)/L(n,n);

Implementing the same algorithm by a row-oriented rather than a column-
oriented approach, might dramatically change its performance (but of course,
not the solution). The choice of the form of implementation must therefore
be subordinated to the specific hardware that is used.

Similar considerations hold for the backward substitution method, pre-
sented in (3.23) in its row-oriented version.
In Program 3 only the column-oriented version of the algorithm is coded.
As usual, the vector x is overwritten on b.
Program 3 - backward col : Backward substitution: column-oriented ver-
sion

function [b]=backward col(U,b)
[n]=mat square(U);
for j = n:-1:2,

b(j)=b(j)/U(j,j); b(1:j-1)=b(1:j-1)-b(j)*U(1:j-1,j);
end; b(1) = b(1)/U(1,1);

When large triangular systems must be solved, only the triangular portion
of the matrix should be stored leading to considerable saving of memory
resources.
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Gaussian elimination (GE)
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Gaussian Elimination: 
• Reduce Ax=b to an equivalent system (that is, having the same solution) of 

form Ux=b
U: upper triangular matrix,  b: updated right side vector. 

• The latter system can then be solved by backward substitution
• Let us denote the original system by A(1)x = b(1)

1. Introduce the multipliers: 

2. Eliminate the unknown x1 in
the following rows i below row 1:

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 69

Thus, consider a nonsingular matrix A ∈ Rn×n, and suppose that the
diagonal entry a11 is non vanishing. Introducing the multipliers

mi1 =
a(1)
i1

a(1)
11

, i = 2, 3, . . . , n,

where a(1)
ij denote the elements of A(1), it is possible to eliminate the un-

known x1 from the rows other than the first one by simply subtracting
from row i, with i = 2, . . . , n, the first row multiplied by mi1 and doing
the same on the right side. If we now define

a(2)
ij = a(1)

ij −mi1a
(1)
1j , i, j = 2, . . . , n,

b(2)i = b(1)i −mi1b
(1)
1 , i = 2, . . . , n,

where b(1)i denote the components of b(1), we get a new system of the form

⎡

⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 . . . a(1)
1n

0 a(2)
22 . . . a(2)

2n
...

...
...

0 a(2)
n2 . . . a(2)

nn

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1
x2
...
xn

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

b(1)1

b(2)2
...

b(2)n

⎤

⎥⎥⎥⎥⎦
,

which we denote by A(2)x = b(2), that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown
x2 is eliminated from rows 3, . . . , n. In general, we end up with the finite
sequence of systems

A(k)x = b(k), 1 ≤ k ≤ n, (3.29)

where, for k ≥ 2, matrix A(k) takes the following form

A(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 . . . . . . . . . a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0 . . . 0 a(k)
kk . . . a(k)

kn
...

...
...

...
0 . . . 0 a(k)

nk . . . a(k)
nn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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è ó A(2)x = b(2)
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Then eliminate x2 from rows 3,…,n, etc.
In general after k-1 elimination steps, we have a system:

And finally, we get: 
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mi1 =
a(1)
i1

a(1)
11

, i = 2, 3, . . . , n,

where a(1)
ij denote the elements of A(1), it is possible to eliminate the un-

known x1 from the rows other than the first one by simply subtracting
from row i, with i = 2, . . . , n, the first row multiplied by mi1 and doing
the same on the right side. If we now define

a(2)
ij = a(1)

ij −mi1a
(1)
1j , i, j = 2, . . . , n,

b(2)i = b(1)i −mi1b
(1)
1 , i = 2, . . . , n,

where b(1)i denote the components of b(1), we get a new system of the form

⎡

⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 . . . a(1)
1n

0 a(2)
22 . . . a(2)

2n
...

...
...

0 a(2)
n2 . . . a(2)

nn

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1
x2
...
xn

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

b(1)1

b(2)2
...

b(2)n

⎤

⎥⎥⎥⎥⎦
,

which we denote by A(2)x = b(2), that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown
x2 is eliminated from rows 3, . . . , n. In general, we end up with the finite
sequence of systems

A(k)x = b(k), 1 ≤ k ≤ n, (3.29)

where, for k ≥ 2, matrix A(k) takes the following form

A(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 . . . . . . . . . a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0 . . . 0 a(k)
kk . . . a(k)

kn
...

...
...

...
0 . . . 0 a(k)

nk . . . a(k)
nn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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having assumed that a(i)
ii ̸= 0 for i = 1, . . . , k− 1. It is clear that for k = n

we obtain the upper triangular system A(n)x = b(n)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 . . . . . . a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0
. . .

...
0 a(n)

nn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x1
x2
...
...
xn

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b(1)1

b(2)2
...
...

b(n)
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A(n). The entries a(k)

kk are called
pivots and must obviously be non null for k = 1, . . . , n− 1.

In order to highlight the formulae which transform the k-th system into
the k + 1-th one, for k = 1, . . . , n− 1 we assume that a(k)

kk ̸= 0 and define
the multiplier

mik =
a(k)
ik

a(k)
kk

, i = k + 1, . . . , n. (3.30)

Then we let

a(k+1)
ij = a(k)

ij −mika
(k)
kj , i, j = k + 1, . . . , n

b(k+1)
i = b(k)

i −mikb
(k)
k , i = k + 1, . . . , n.

(3.31)

Example 3.2 Let us use GEM to solve the following system

(A(1)x = b(1))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

1
2x1 + 1

3x2 + 1
4x3 = 13

12

1
3x1 + 1

4x2 + 1
5x3 = 47

60

,

which admits the solution x=(1, 1, 1)T . At the first step we compute the mul-
tipliers m21 = 1/2 and m31 = 1/3, and subtract from the second and third
equation of the system the first row multiplied by m21 and m31, respectively. We
obtain the equivalent system

(A(2)x = b(2))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 1
12x2 + 4

45x3 = 31
180

.

If we now subtract the second row multiplied by m32 = 1 from the third one, we
end up with the upper triangular system

(A(3)x = b(3))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 0 + 1
180x3 = 1

180

,

óUx=b 

We assumed a(i)
ii¹ 0 (i=1,…,n-1). These elements are called pivots.    

O(n3) algorithm
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3x3 Hilbert matrix:
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having assumed that a(i)
ii ̸= 0 for i = 1, . . . , k− 1. It is clear that for k = n

we obtain the upper triangular system A(n)x = b(n)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 . . . . . . a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0
. . .

...
0 a(n)

nn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x1
x2
...
...
xn

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b(1)1

b(2)2
...
...

b(n)
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A(n). The entries a(k)

kk are called
pivots and must obviously be non null for k = 1, . . . , n− 1.

In order to highlight the formulae which transform the k-th system into
the k + 1-th one, for k = 1, . . . , n− 1 we assume that a(k)

kk ̸= 0 and define
the multiplier

mik =
a(k)
ik

a(k)
kk

, i = k + 1, . . . , n. (3.30)

Then we let

a(k+1)
ij = a(k)

ij −mika
(k)
kj , i, j = k + 1, . . . , n

b(k+1)
i = b(k)

i −mikb
(k)
k , i = k + 1, . . . , n.

(3.31)

Example 3.2 Let us use GEM to solve the following system

(A(1)x = b(1))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

1
2x1 + 1

3x2 + 1
4x3 = 13

12

1
3x1 + 1

4x2 + 1
5x3 = 47

60

,

which admits the solution x=(1, 1, 1)T . At the first step we compute the mul-
tipliers m21 = 1/2 and m31 = 1/3, and subtract from the second and third
equation of the system the first row multiplied by m21 and m31, respectively. We
obtain the equivalent system

(A(2)x = b(2))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 1
12x2 + 4

45x3 = 31
180

.

If we now subtract the second row multiplied by m32 = 1 from the third one, we
end up with the upper triangular system

(A(3)x = b(3))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 0 + 1
180x3 = 1

180

,
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having assumed that a(i)
ii ̸= 0 for i = 1, . . . , k− 1. It is clear that for k = n

we obtain the upper triangular system A(n)x = b(n)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 . . . . . . a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0
. . .

...
0 a(n)

nn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x1
x2
...
...
xn

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b(1)1

b(2)2
...
...

b(n)
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Consistently with the notations that have been previously introduced, we
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kk are called
pivots and must obviously be non null for k = 1, . . . , n− 1.

In order to highlight the formulae which transform the k-th system into
the k + 1-th one, for k = 1, . . . , n− 1 we assume that a(k)

kk ̸= 0 and define
the multiplier

mik =
a(k)
ik

a(k)
kk

, i = k + 1, . . . , n. (3.30)

Then we let

a(k+1)
ij = a(k)

ij −mika
(k)
kj , i, j = k + 1, . . . , n

b(k+1)
i = b(k)

i −mikb
(k)
k , i = k + 1, . . . , n.

(3.31)
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(A(1)x = b(1))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

1
2x1 + 1

3x2 + 1
4x3 = 13

12

1
3x1 + 1

4x2 + 1
5x3 = 47

60

,

which admits the solution x=(1, 1, 1)T . At the first step we compute the mul-
tipliers m21 = 1/2 and m31 = 1/3, and subtract from the second and third
equation of the system the first row multiplied by m21 and m31, respectively. We
obtain the equivalent system

(A(2)x = b(2))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 1
12x2 + 4

45x3 = 31
180

.

If we now subtract the second row multiplied by m32 = 1 from the third one, we
end up with the upper triangular system

(A(3)x = b(3))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 0 + 1
180x3 = 1

180

,
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having assumed that a(i)
ii ̸= 0 for i = 1, . . . , k− 1. It is clear that for k = n

we obtain the upper triangular system A(n)x = b(n)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 . . . . . . a(1)
1n

0 a(2)
22 a(2)

2n
...

. . .
...

0
. . .

...
0 a(n)

nn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x1
x2
...
...
xn

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b(1)1

b(2)2
...
...

b(n)
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A(n). The entries a(k)

kk are called
pivots and must obviously be non null for k = 1, . . . , n− 1.

In order to highlight the formulae which transform the k-th system into
the k + 1-th one, for k = 1, . . . , n− 1 we assume that a(k)

kk ̸= 0 and define
the multiplier

mik =
a(k)
ik

a(k)
kk

, i = k + 1, . . . , n. (3.30)

Then we let

a(k+1)
ij = a(k)

ij −mika
(k)
kj , i, j = k + 1, . . . , n

b(k+1)
i = b(k)

i −mikb
(k)
k , i = k + 1, . . . , n.

(3.31)

Example 3.2 Let us use GEM to solve the following system

(A(1)x = b(1))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

1
2x1 + 1

3x2 + 1
4x3 = 13

12

1
3x1 + 1

4x2 + 1
5x3 = 47

60

,

which admits the solution x=(1, 1, 1)T . At the first step we compute the mul-
tipliers m21 = 1/2 and m31 = 1/3, and subtract from the second and third
equation of the system the first row multiplied by m21 and m31, respectively. We
obtain the equivalent system

(A(2)x = b(2))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 1
12x2 + 4

45x3 = 31
180

.

If we now subtract the second row multiplied by m32 = 1 from the third one, we
end up with the upper triangular system

(A(3)x = b(3))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + 1
2x2 + 1

3x3 = 11
6

0 + 1
12x2 + 1

12x3 = 1
6

0 + 0 + 1
180x3 = 1

180

,

m21=1/2, m31=1/3:

m32=1:

à x3=1, x2=1, x1=1 General Hilbert matrix: hij=1/(i+j-1);  i,j=1,…,n



pivots
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GE only works if the pivots are finite.

There are classes of matrices, when GE is “safe”
• A is diagonally dominant by rows
• A is diagonally dominant by column
• A is symmetric and positive definite

If zero (or small) pivots are encountered, one can reorder the 
remaining rows of A(k) [b(k) elements accordingly] in order to move 
the largest (absolute value) element to the pivot position and 
continue. 



Pseudocode for GE with pivoting
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for k = 1 ... m:
   //Find pivot for column k:
   i_max  := argmax (i = k ... m, abs(A[i, k]))
   if A[i_max, k] = 0
     error "Matrix is singular!"
   swap rows(k, i_max)
   //Do for all rows below pivot:
    for i = k + 1 ... m:
      //Do for all remaining elements in current row:
      for j = k ... n:
        A[i, j]  := A[i, j] - A[k, j] * (A[i, k] / A[k, k])
     //Fill lower triangular matrix with zeros:
     A[i, k]  := 0



LU decomposition
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GE is equivalent to performing a factorization of the matrix A into 
the product of two matrices, A=LU, with U=A(n).

• L and U do not depend on b and can therefore be used to solve 
the linear system for different b. 
This means a reduction of computation time to O(n2)

• Let us go back to the Hilbert matrix example to see how the 
matrix L is constructed:

  define:

  indeed:

72 3. Direct Methods for the Solution of Linear Systems

3.3.1 GEM as a Factorization Method
In this section we show how GEM is equivalent to performing a factorization
of the matrix A into the product of two matrices, A=LU, with U=A(n).
Since L and U depend only on A and not on the right hand side, the same
factorization can be reused when solving several linear systems having the
same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In
practice, to pass from A(1)=H3 to the matrix A(2) at the second step, we
have multiplied the system by the matrix

M1 =

⎡

⎢⎢⎢⎣

1 0 0

− 1
2 1 0

− 1
3 0 1

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

1 0 0

−m21 1 0

−m31 0 1

⎤

⎥⎥⎥⎦
.

Indeed,

M1A = M1A(1) =

⎡

⎢⎢⎢⎣

1 1
2

1
3

0 1
12

1
12

0 1
12

4
45

⎤

⎥⎥⎥⎦
= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
A(2) by the matrix

M2 =

⎡

⎢⎢⎢⎣

1 0 0

0 1 0

0 −1 1

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

1 0 0

0 1 0

0 −m32 1

⎤

⎥⎥⎥⎦
,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

mk = (0, . . . , 0,mk+1,k, . . . ,mn,k)T ∈ Rn
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same matrix A but different right hand side b, with a considerable reduction
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where A(3) = M2A(2). Therefore
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On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets
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3.3.1 GEM as a Factorization Method
In this section we show how GEM is equivalent to performing a factorization
of the matrix A into the product of two matrices, A=LU, with U=A(n).
Since L and U depend only on A and not on the right hand side, the same
factorization can be reused when solving several linear systems having the
same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In
practice, to pass from A(1)=H3 to the matrix A(2) at the second step, we
have multiplied the system by the matrix

M1 =

⎡

⎢⎢⎢⎣

1 0 0

− 1
2 1 0

− 1
3 0 1
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=

⎡
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1 0 0
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⎤

⎥⎥⎥⎦
.

Indeed,

M1A = M1A(1) =

⎡

⎢⎢⎢⎣

1 1
2

1
3

0 1
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1
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0 1
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4
45

⎤

⎥⎥⎥⎦
= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
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M2 =
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,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting
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and

therefore 
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same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix H3. In
practice, to pass from A(1)=H3 to the matrix A(2) at the second step, we
have multiplied the system by the matrix

M1 =

⎡

⎢⎢⎢⎣

1 0 0

− 1
2 1 0

− 1
3 0 1

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

1 0 0

−m21 1 0

−m31 0 1

⎤

⎥⎥⎥⎦
.

Indeed,

M1A = M1A(1) =

⎡

⎢⎢⎢⎣

1 1
2

1
3

0 1
12

1
12

0 1
12

4
45

⎤

⎥⎥⎥⎦
= A(2).

Similarly, to perform the second (and last) step of GEM, we must multiply
A(2) by the matrix

M2 =

⎡

⎢⎢⎢⎣

1 0 0

0 1 0

0 −1 1

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

1 0 0

0 1 0

0 −m32 1

⎤

⎥⎥⎥⎦
,

where A(3) = M2A(2). Therefore

M2M1A = A(3) = U. (3.34)

On the other hand, matrices M1 and M2 are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (M2M1)−1U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

mk = (0, . . . , 0,mk+1,k, . . . ,mn,k)T ∈ Rn
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and defining

Mk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 1 0 0
0 −mk+1,k 1 0
...

...
...

...
. . .

...
0 . . . −mn,k 0 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

= In − mkeTk

as the k-th Gaussian transformation matrix, one finds out that

(Mk)ip = δip − (mkeTk )ip = δip −mikδkp, i, p = 1, . . . , n.

On the other hand, from (3.31) we have that

a(k+1)
ij = a(k)

ij −mikδkka
(k)
kj =

n∑

p=1

(δip −mikδkp)a
(k)
pj , i, j = k + 1, . . . , n,

or, equivalently,

A(k+1) = MkA(k). (3.35)

As a consequence, at the end of the elimination process the matrices Mk,
with k = 1, . . . , n− 1, and the matrix U have been generated such that

Mn−1Mn−2 . . .M1A = U.

The matrices Mk are unit lower triangular with inverse given by

M−1
k = 2In − Mk = In + mkeTk , (3.36)

where (mieTi )(mjeTj ) are equal to the null matrix if i ̸= j. As a consequence

A = M−1
1 M−1

2 . . .M−1
n−1U

= (In + m1eT1 )(In + m2eT2 ) . . . (In + mn−1eTn−1)U

=

(

In +
n−1∑

i=1

mieTi

)

U

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . 0

m21 1
...

... m32
. . .

...

...
...

. . . 0

mn1 mn2 . . . mn,n−1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U.

(3.37)
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U.

(3.37)
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The complete elimination process is therefore:

with 

we get L from:
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(3.37)

Once the matrices L and U have been computed, solving the linear 
system consists only of solving successively the two triangular systems:
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Defining L = (Mn−1Mn−2 . . .M1)−1 = M−1
1 . . .M−1

n−1, it follows that

A = LU.

We notice that, due to (3.37), the subdiagonal entries of L are the multi-
pliers mik produced by GEM, while the diagonal entries are equal to one.

Once the matrices L and U have been computed, solving the linear system
consists only of solving successively the two triangular systems

Ly = b

Ux = y.

The computational cost of the factorization process is obviously the same
as that required by GEM.

The following result establishes a link between the leading dominant
minors of a matrix and its LU factorization induced by GEM.

Theorem 3.4 Let A ∈ Rn×n. The LU factorization of A with lii = 1 for
i = 1, . . . , n exists and is unique iff the principal submatrices Ai of A of
order i = 1, . . . , n− 1 are nonsingular.

Proof. The existence of the LU factorization can be proved following the steps
of the GEM. Here we prefer to pursue an alternative approach, which allows for
proving at the same time both existence and uniqueness and that will be used
again in later sections.

Let us assume that the leading minors Ai of A are nonsingular for i = 1, . . . , n−
1 and prove, by induction on i, that under this hypothesis the LU factorization
of A(= An) with lii = 1 for i = 1, . . . , n, exists and is unique.

The property is obviously true if i = 1. Assume therefore that there exists an
unique LU factorization of Ai−1 of the form Ai−1 = L(i−1)U(i−1) with l(i−1)

kk = 1
for k = 1, . . . , i − 1, and show that there exists an unique factorization also for
Ai. We partition Ai by block matrices as

Ai =

⎡

⎣
Ai−1 c

dT aii

⎤

⎦

and look for a factorization of Ai of the form

Ai = L(i)U(i) =

⎡

⎣
L(i−1) 0

lT 1

⎤

⎦

⎡

⎣
U(i−1) u

0T uii

⎤

⎦ , (3.38)

having also partitioned by blocks the factors L(i) and U(i). Computing the prod-
uct of these two factors and equating by blocks the elements of Ai, it turns out
that the vectors l and u are the solutions to the linear systems L(i−1)u = c,
lTU(i−1) = dT .



LU implementation

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction 16

Since L is a lower triangular matrix with diagonal entries equal to 1 
and U is upper triangular, it is possible (and convenient) to store the 
LU factorization directly in the same memory area that is occupied 
by the matrix A. More precisely, U is stored in the upper triangular 
part of A (including the diagonal), whilst L occupies the lower 
triangular portion of A (the diagonal entries of L are not stored since 
they are implicitly assumed to be 1).

MatLab implementation

3.3 The Gaussian Elimination Method (GEM) and LU Factorization 77

3.3.3 Implementation of LU Factorization
Since L is a lower triangular matrix with diagonal entries equal to 1 and U
is upper triangular, it is possible (and convenient) to store the LU factor-
ization directly in the same memory area that is occupied by the matrix A.
More precisely, U is stored in the upper triangular part of A (including the
diagonal), whilst L occupies the lower triangular portion of A (the diagonal
entries of L are not stored since they are implicitly assumed to be 1).

A coding of the algorithm is reported in Program 4. The output matrix
A contains the overwritten LU factorization.
Program 4 - lu kji : LU factorization of matrix A. kji version

function [A] = lu kji (A)
[n,n]=size(A);
for k=1:n-1

A(k+1:n,k)=A(k+1:n,k)/A(k,k);
for j=k+1:n, for i=k+1:n

A(i,j)=A(i,j)-A(i,k)*A(k,j);
end, end

end

This implementation of the factorization algorithm is commonly referred
to as the kji version, due to the order in which the cycles are executed.
In a more appropriate notation, it is called the SAXPY − kji version,
due to the fact that the basic operation of the algorithm, which consists of
multiplying a scalar A by a vector X, summing another vector Y and then
storing the result, is usually called SAXPY (i.e. Scalar A X P lus Y ).

The factorization can of course be executed by following a different order.
In general, the forms in which the cycle on index i precedes the cycle on
j are called row-oriented, whilst the others are called column-oriented. As
usual, this terminology refers to the fact that the matrix is accessed by
rows or by columns.

An example of LU factorization, jki version and column-oriented, is given
in Program 5. This version is commonly called GAXPY − jki, since the
basic operation (a product matrix-vector), is called GAXPY which stands
for Generalized sAXPY (see for further details [DGK84]). In the GAXPY
operation the scalar A of the SAXPY operation is replaced by a matrix.
Program 5 - lu jki : LU factorization of matrix A. jki version

function [A] = lu jki (A)
[n,n]=size(A);
for j=1:n

for k=1:j-1, for i=k+1:n
A(i,j)=A(i,j)-A(i,k)*A(k,j);

end, end
for i=j+1:n, A(i,j)=A(i,j)/A(j,j); end

end
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One final remark on LU: If (partial) pivoting (exchange of rows) is used in GE a 
corresponding permutation matrix, Pi, needs to be inserted in the factorization 
of A, i.e.,

Similarly for full pivoting, when also columns of the remaining sub-matrix are 
exchanged in order to move the element with largest absolute value to the 
pivot position.

3.5 Pivoting 87

and where b is chosen in such a way that x = (1, 1)T is the exact solution.
Suppose we use base 2 and 16 significant digits. GEM without pivoting would
give xMEG = (0.99920072216264, 1)T , while GEM plus partial pivoting furnishes
the exact solution up to the 16th digit. •

Let us analyze how partial pivoting affects the LU factorization induced
by GEM. At the first step of GEM with partial pivoting, after finding
out the entry ar1 of maximum module in the first column, the elementary
permutation matrix P1 which exchanges the first row with the r-th row is
constructed (if r = 1, P1 is the identity matrix). Next, the first Gaussian
transformation matrix M1 is generated and we set A(2) = M1P1A(1). A
similar approach is now taken on A(2), searching for a new permutation
matrix P2 and a new matrix M2 such that

A(3) = M2P2A(2) = M2P2M1P1A(1).

Executing all the elimination steps, the resulting upper triangular matrix
U is now given by

U = A(n) = Mn−1Pn−1 . . .M1P1A(1). (3.51)

Letting M = Mn−1Pn−1 . . .M1P1 and P = Pn−1 . . .P1, we obtain that
U=MA and, thus, U = (MP−1)PA. It can easily be checked that the matrix
L = PM−1 is unit lower triangular, so that the LU factorization reads

PA = LU. (3.52)

One should not be worried by the presence of the inverse of M, since M−1 =
P−1

1 M−1
1 . . .P−1

n−1M
−1
n−1 and P−1

i = PT
i while M−1

i = 2In − Mi.
Once L, U and P are available, solving the initial linear system amounts

to solving the triangular systems Ly = Pb and Ux = y. Notice that the
entries of the matrix L coincide with the multipliers computed by LU fac-
torization, without pivoting, when applied to the matrix PA.
If complete pivoting is performed, at the first step of the process, once the
element aqr of largest module in submatrix A(1 : n, 1 : n) has been found,
we must exchange the first row and column with the q-th row and the
r-th column. This generates the matrix P1A(1)Q1, where P1 and Q1 are
permutation matrices by rows and by columns, respectively.

As a consequence, the action of matrix M1 is now such that A(2) =
M1P1A(1)Q1. Repeating the process, at the last step, instead of (3.51) we
obtain

U = A(n) = Mn−1Pn−1 . . .M1P1A(1)Q1 . . .Qn−1.

In the case of complete pivoting the LU factorization becomes

PAQ = LU,

Related factorizations:
• LDMT factorization: L, MT and D are lower triangular, upper triangular and 

diagonal matrices, respectively (L does not need to have a “1” diagonal)
• This gives for symmetric matrices: M=L, i.e., a LDLT factorization 
• Cholesky factorization for symmetric and positive definite matrices: A=HTH, 

where H is a unique upper triangular matrix with positive diagonal elements
• QR factorization for rectangular matrices: A = QR, with A2Rm£n (m≥n), 

orthogonal matrix Q2Rm£m, and trapezoidal matrix R2Rm£n with zero rows 
n+1,…,m --- important for eigenvalue calculation of square matrices.
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In simulations the matrix A is often sparse, i.e., most elements zero.
In particular the have a band structure with finite diagonal elements and a few 
finite off-diagonals.

Tridiagonal matrices:
(occur e.g. when discretizing
gradients and Laplacians)

Then

with
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3.7.1 Tridiagonal Matrices
Consider the particular case of a linear system with nonsingular tridiagonal
matrix A given by

A =

⎡

⎢⎢⎢⎢⎢⎣

a1 c1 0
b2 a2

. . .
. . . cn−1

0 bn an

⎤

⎥⎥⎥⎥⎥⎦
.

In such an event, the matrices L and U of the LU factorization of A are
bidiagonal matrices of the form

L =

⎡

⎢⎢⎢⎢⎣

1 0
β2 1

. . . . . .
0 βn 1

⎤

⎥⎥⎥⎥⎦
U =

⎡

⎢⎢⎢⎢⎢⎣

α1 c1 0
α2

. . .

. . . cn−1

0 αn

⎤

⎥⎥⎥⎥⎥⎦
.

The coefficients αi and βi can easily be computed by the following relations

α1 = a1, βi =
bi

αi−1
, αi = ai − βici−1, i = 2, . . . , n. (3.53)

This is known as the Thomas algorithm and can be regarded as a particular
instance of the Doolittle factorization, without pivoting. When one is not
interested in storing the coefficients of the original matrix, the entries αi

and βi can be overwritten on A.
The Thomas algorithm can also be extended to solve the whole tridi-

agonal system Ax = f . This amounts to solving two bidiagonal systems
Ly = f and Ux = y, for which the following formulae hold

(Ly = f) y1 = f1, yi = fi − βiyi−1, i = 2, . . . , n, (3.54)

(Ux = y) xn =
yn
αn

, xi = (yi − cixi+1) /αi, i = n− 1, . . . , 1. (3.55)

The algorithm requires only 8n − 7 flops: precisely, 3(n − 1) flops for the
factorization (3.53) and 5n− 4 flops for the substitution procedure (3.54)-
(3.55).

As for the stability of the method, if A is a nonsingular tridiagonal matrix
and L̂ and Û are the factors actually computed, then

|δA| ≤ (4u + 3u2 + u3)|L̂| |Û|,
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Thomas algorithm O(k n) algorithm
(k number of finite off-diagonals)
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• Iterative methods formally yield the solution x of a linear system after an 
infinite number of steps.

• At each step they require the computation of the residual of the system. 
• In the case of a full matrix, their computational cost is therefore of the order 

of n2 operations for each iteration, to be compared with an overall cost of the 
order of 2/3n3 operations needed by direct methods. 

à Iterative methods can therefore become competitive with direct methods 
provided the number of iterations that are required to converge (within a 
prescribed tolerance) is either independent of n or scales sub-linearly with 
respect to n.

(Some) iterative methods can be parallelized! 
Direct methods are typically sequential, and each step depends on 
the result of the previous one.
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The basic idea of iterative methods is to construct a sequence of 
vectors x(k) that enjoy the property of convergence:

where x is the solution of Ax=b

The iteration processes is stopped when
with a prescribed tolerance ².
Problem with this conditions: Impractical, since we do not know x.

General scheme:

4
Iterative Methods for Solving Linear
Systems

Iterative methods formally yield the solution x of a linear system after an
infinite number of steps. At each step they require the computation of the
residual of the system. In the case of a full matrix, their computational
cost is therefore of the order of n2 operations for each iteration, to be
compared with an overall cost of the order of 2

3n
3 operations needed by

direct methods. Iterative methods can therefore become competitive with
direct methods provided the number of iterations that are required to con-
verge (within a prescribed tolerance) is either independent of n or scales
sublinearly with respect to n.

In the case of large sparse matrices, as discussed in Section 3.9, direct
methods may be unconvenient due to the dramatic fill-in, although ex-
tremely efficient direct solvers can be devised on sparse matrices featuring
special structures like, for example, those encountered in the approximation
of partial differential equations (see Chapters 12 and 13).

Finally, we notice that, when A is ill-conditioned, a combined use of direct
and iterative methods is made possible by preconditioning techniques that
will be addressed in Section 4.3.2.

4.1 On the Convergence of Iterative Methods

The basic idea of iterative methods is to construct a sequence of vectors
x(k) that enjoy the property of convergence

x = lim
k→∞

x(k), (4.1)
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where x is the solution to (3.2). In practice, the iterative process is stopped
at the minimum value of n such that ∥x(n) − x∥ < ε, where ε is a fixed
tolerance and ∥ · ∥ is any convenient vector norm. However, since the exact
solution is obviously not available, it is necessary to introduce suitable
stopping criteria to monitor the convergence of the iteration (see Section
4.6).

To start with, we consider iterative methods of the form

x(0) given, x(k+1) = Bx(k) + f , k ≥ 0, (4.2)

having denoted by B an n × n square matrix called the iteration matrix
and by f a vector that is obtained from the right hand side b.

Definition 4.1 An iterative method of the form (4.2) is said to be consis-
tent with (3.2) if f and B are such that x = Bx + f . Equivalently,

f = (I − B)A−1b.

!

Having denoted by

e(k) = x(k) − x (4.3)

the error at the k-th step of the iteration, the condition for convergence
(4.1) amounts to requiring that lim

k→∞
e(k) = 0 for any choice of the initial

datum x(0) (often called the initial guess).
Consistency alone does not suffice to ensure the convergence of the iter-

ative method (4.2), as shown in the following example.

Example 4.1 To solve the linear system 2Ix = b, consider the iterative method

x(k+1) = −x(k) + b,

which is obviously consistent. This scheme is not convergent for any choice of
the initial guess. If, for instance, x(0) = 0, the method generates the sequence
x(2k) = 0, x(2k+1) = b, k = 0, 1, . . . .

On the other hand, if x(0) = 1
2b the method is convergent. •

Theorem 4.1 Let (4.2) be a consistent method. Then, the sequence of vec-
tors

{
x(k)} converges to the solution of (3.2) for any choice of x(0) iff

ρ(B) < 1.

Proof. From (4.3) and the consistency assumption, the recursive relation e(k+1) =
Be(k) is obtained. Therefore,

e(k) = Bke(0), ∀k = 0, 1, . . . (4.4)

4.1 On the Convergence of Iterative Methods 125

Thus, thanks to Theorem 1.5, it follows that lim
k→∞

Bke(0) = 0 for any e(0) iff

ρ(B) < 1.
Conversely, suppose that ρ(B) > 1, then there exists at least one eigenvalue

λ(B) with module greater than 1. Let e(0) be an eigenvector associated with λ;
then Be(0) = λe(0) and, therefore, e(k) = λke(0). As a consequence, e(k) cannot
tend to 0 as k → ∞, since |λ| > 1. ✸

From (1.23) and Theorem 1.5 it follows that a sufficient condition for con-
vergence to hold is that ∥B∥ < 1, for any matrix norm. It is reasonable
to expect that the convergence is faster when ρ(B) is smaller so that an
estimate of ρ(B) might provide a sound indication of the convergence of
the algorithm. Other remarkable quantities in convergence analysis are con-
tained in the following definition.

Definition 4.2 Let B be the iteration matrix. We call:

1. ∥Bm∥ the convergence factor after m steps of the iteration;

2. ∥Bm∥1/m the average convergence factor after m steps;

3. Rm(B) = − 1
m log ∥Bm∥ the average convergence rate after m steps.

!

These quantities are too expensive to compute since they require evaluating
Bm. Therefore, it is usually preferred to estimate the asymptotic conver-
gence rate, which is defined as

R(B) = lim
k→∞

Rk(B) = − log ρ(B) (4.5)

where Property 1.13 has been accounted for. In particular, if B were sym-
metric, we would have

Rm(B) = − 1
m

log ∥Bm∥2 = − log ρ(B).

In the case of nonsymmetric matrices, ρ(B) sometimes provides an overop-
timistic estimate of ∥Bm∥1/m (see [Axe94], Section 5.1). Indeed, although
ρ(B) < 1, the convergence to zero of the sequence ∥Bm∥ might be non-
monotone (see Exercise 1). We finally notice that, due to (4.5), ρ(B) is
the asymptotic convergence factor. Criteria for estimating the quantities
defined so far will be addressed in Section 4.6.

Remark 4.1 The iterations introduced in (4.2) are a special instance of
iterative methods of the form

x(0) = f0(A,b),

x(n+1) = fn+1(x(n),x(n−1), . . . ,x(n−m),A,b), for n ≥ m,



Definitions

A. Glatz: Advanced Computational Methods in Condensed Matter Physics - Introduction 21

In this general scheme fi and x(m),…, x(1) are given functions and vectors, 
respectively. 
• The number of steps which the current iteration depends on is called the order 

of the method. 
• If the functions fi are independent of the step index i, the method is called 

stationary, otherwise it is non-stationary. 
• Finally, if fi depends linearly on x(0), …, x(m), the method is called linear, 

otherwise it is nonlinear.
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Here we consider an iteration of the form

• B is an n x n square matrix called the iteration matrix
• f is a vector obtained from the right-hand side b 
• Consistent with Ax=b if f=(I-B)A-1b

Using the above splitting of A, we calculate x(k) for k>0, solving

i.e., B=P-1N and f=P-1b
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where x is the solution to (3.2). In practice, the iterative process is stopped
at the minimum value of n such that ∥x(n) − x∥ < ε, where ε is a fixed
tolerance and ∥ · ∥ is any convenient vector norm. However, since the exact
solution is obviously not available, it is necessary to introduce suitable
stopping criteria to monitor the convergence of the iteration (see Section
4.6).

To start with, we consider iterative methods of the form

x(0) given, x(k+1) = Bx(k) + f , k ≥ 0, (4.2)

having denoted by B an n × n square matrix called the iteration matrix
and by f a vector that is obtained from the right hand side b.

Definition 4.1 An iterative method of the form (4.2) is said to be consis-
tent with (3.2) if f and B are such that x = Bx + f . Equivalently,

f = (I − B)A−1b.

!

Having denoted by

e(k) = x(k) − x (4.3)

the error at the k-th step of the iteration, the condition for convergence
(4.1) amounts to requiring that lim

k→∞
e(k) = 0 for any choice of the initial

datum x(0) (often called the initial guess).
Consistency alone does not suffice to ensure the convergence of the iter-

ative method (4.2), as shown in the following example.

Example 4.1 To solve the linear system 2Ix = b, consider the iterative method

x(k+1) = −x(k) + b,

which is obviously consistent. This scheme is not convergent for any choice of
the initial guess. If, for instance, x(0) = 0, the method generates the sequence
x(2k) = 0, x(2k+1) = b, k = 0, 1, . . . .

On the other hand, if x(0) = 1
2b the method is convergent. •

Theorem 4.1 Let (4.2) be a consistent method. Then, the sequence of vec-
tors

{
x(k)} converges to the solution of (3.2) for any choice of x(0) iff

ρ(B) < 1.

Proof. From (4.3) and the consistency assumption, the recursive relation e(k+1) =
Be(k) is obtained. Therefore,

e(k) = Bke(0), ∀k = 0, 1, . . . (4.4)

Here we focus on stationary, linear iterative methods of order one. 
• general technique: additive splitting of matrix A of form A=P−N
• P and N are two suitable matrices and P is nonsingular
• P is called preconditioning matrix or preconditioner
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where fi and x(m), . . . ,x(1) are given functions and vectors, respectively.
The number of steps which the current iteration depends on is called the
order of the method. If the functions fi are independent of the step index i,
the method is called stationary, otherwise it is nonstationary. Finally, if fi
depends linearly on x(0), . . . ,x(m), the method is called linear, otherwise
it is nonlinear.

In the light of these definitions, the methods considered so far are there-
fore stationary linear iterative methods of first order. In Section 4.3, exam-
ples of nonstationary linear methods will be provided. !

4.2 Linear Iterative Methods

A general technique to devise consistent linear iterative methods is based
on an additive splitting of the matrix A of the form A=P−N, where P
and N are two suitable matrices and P is nonsingular. For reasons that
will be clear in the later sections, P is called preconditioning matrix or
preconditioner.

Precisely, given x(0), one can compute x(k) for k ≥ 1, solving the systems

Px(k+1) = Nx(k) + b, k ≥ 0. (4.6)

The iteration matrix of method (4.6) is B = P−1N, while f = P−1b. Alter-
natively, (4.6) can be written in the form

x(k+1) = x(k) + P−1r(k), (4.7)

where

r(k) = b − Ax(k) (4.8)

denotes the residual vector at step k. Relation (4.7) outlines the fact that
a linear system, with coefficient matrix P, must be solved to update the
solution at step k+1. Thus P, besides being nonsingular, ought to be easily
invertible, in order to keep the overall computational cost low. (Notice that,
if P were equal to A and N=0, method (4.7) would converge in one iteration,
but at the same cost of a direct method).

Let us mention two results that ensure convergence of the iteration (4.7),
provided suitable conditions on the splitting of A are fulfilled (for their
proof, we refer to [Hac94]).

Property 4.1 Let A = P − N, with A and P symmetric and positive def-
inite. If the matrix 2P − A is positive definite, then the iterative method
defined in (4.7) is convergent for any choice of the initial datum x(0) and

ρ(B) = ∥B∥A = ∥B∥P < 1.
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This scheme can be written as

with the residual

We note that:
1. P should be chosen such that it can be easily inverted
2. If P=A and N=0, the iteration would converge in one step
3. The residual is a measure of how good x(k) approximates the real solution x
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invertible, in order to keep the overall computational cost low. (Notice that,
if P were equal to A and N=0, method (4.7) would converge in one iteration,
but at the same cost of a direct method).

Let us mention two results that ensure convergence of the iteration (4.7),
provided suitable conditions on the splitting of A are fulfilled (for their
proof, we refer to [Hac94]).

Property 4.1 Let A = P − N, with A and P symmetric and positive def-
inite. If the matrix 2P − A is positive definite, then the iterative method
defined in (4.7) is convergent for any choice of the initial datum x(0) and

ρ(B) = ∥B∥A = ∥B∥P < 1.
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If the diagonal entries of A are nonzero, we can single out in each equation the 
corresponding unknown on the diagonal and write:

In the Jacobi method x(k+1) is computed by [x(0) can be an arbitrary initial guess]

This corresponds to a splitting: P=D, N=D-A=E+F,
• D is a diagonal matrix having the diagonal elements of A
• E is the lower triangular matrix with elements: eij=-aij for i>j, 0 else
• F the upper triangular matrix: fij=-aij for i<j, 0 else

A generalization is the over-relaxation method (JOR):
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Moreover, the convergence of the iteration is monotone with respect to the
norms ∥ · ∥P and ∥ · ∥A (i.e., ∥e(k+1)∥P < ∥e(k)∥P and ∥e(k+1)∥A < ∥e(k)∥A
k = 0, 1, . . . ).

Property 4.2 Let A = P − N with A symmetric and positive definite. If
the matrix P+PT −A is positive definite, then P is invertible, the iterative
method defined in (4.7) is monotonically convergent with respect to norm
∥ · ∥A and ρ(B) ≤ ∥B∥A < 1.

4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods
In this section we consider some classical linear iterative methods.

If the diagonal entries of A are nonzero, we can single out in each equation
the corresponding unknown, obtaining the equivalent linear system

xi =
1
aii

⎡

⎢⎣bi −
n∑

j=1
j ̸=i

aijxj

⎤

⎥⎦ , i = 1, . . . , n. (4.9)

In the Jacobi method, once an arbitrarily initial guess x0 has been chosen,
x(k+1) is computed by the formulae

x(k+1)
i =

1
aii

⎡

⎢⎣bi −
n∑

j=1
j ̸=i

aijx
(k)
j

⎤

⎥⎦ , i = 1, . . . , n. (4.10)

This amounts to performing the following splitting for A

P = D, N = D − A = E + F,

where D is the diagonal matrix of the diagonal entries of A, E is the lower
triangular matrix of entries eij = −aij if i > j, eij = 0 if i ≤ j, and F is
the upper triangular matrix of entries fij = −aij if j > i, fij = 0 if j ≤ i.
As a consequence, A=D-(E+F).

The iteration matrix of the Jacobi method is thus given by

BJ = D−1(E + F) = I − D−1A. (4.11)

A generalization of the Jacobi method is the over-relaxation method
(or JOR), in which, having introduced a relaxation parameter ω, (4.10) is
replaced by

x(k+1)
i =

ω

aii

⎡

⎢⎣bi −
n∑

j=1
j ̸=i

aijx
(k)
j

⎤

⎥⎦ + (1 − ω)x(k)
i , i = 1, . . . , n.
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where ! is a 
relaxation parameter 
0<!· 1 
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The corresponding iteration matrix is

BJω = ωBJ + (1 − ω)I. (4.12)

In the form (4.7), the JOR method corresponds to

x(k+1) = x(k) + ωD−1r(k).

This method is consistent for any ω ̸= 0 and for ω = 1 it coincides with
the Jacobi method.

The Gauss-Seidel method differs from the Jacobi method in the fact that
at the k+ 1-th step the available values of x(k+1)

i are being used to update
the solution, so that, instead of (4.10), one has

x(k+1)
i =

1
aii

⎡

⎣bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

⎤

⎦ , i = 1, . . . , n. (4.13)

This method amounts to performing the following splitting for A

P = D − E, N = F,

and the associated iteration matrix is

BGS = (D − E)−1F. (4.14)

Starting from Gauss-Seidel method, in analogy to what was done for
Jacobi iterations, we introduce the successive over-relaxation method (or
SOR method)

x(k+1)
i =

ω

aii

⎡

⎣bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

⎤

⎦ + (1 − ω)x(k)
i , (4.15)

for i = 1, . . . , n. The method (4.15) can be written in vector form as

(I − ωD−1E)x(k+1) = [(1 − ω)I + ωD−1F]x(k) + ωD−1b (4.16)

from which the iteration matrix is

B(ω) = (I − ωD−1E)−1[(1 − ω)I + ωD−1F]. (4.17)

Multiplying by D both sides of (4.16) and recalling that A = D − (E + F)
yields the following form (4.7) of the SOR method

x(k+1) = x(k) +
(

1
ω

D − E
)−1

r(k).

It is consistent for any ω ̸= 0 and for ω = 1 it coincides with Gauss-Seidel
method. In particular, if ω ∈ (0, 1) the method is called under-relaxation,
while if ω > 1 it is called over-relaxation.
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Remarks:
• In the Jacobi method P=D can be easily inverted
• Each iteration step required therefore only one matrix multiplication, i.e., Ax(k)

• Therefore it can be easily parallelized
• The method converges when A is strictly diagonally dominant, i.e., |aii| is larger than 

the sum of all other absolute values of the elements in the row
• Standard convergence criterion: ½(D-1N)<1 (½ is the spectral radius, i.e., the largest 

absolute value of this eigenvalues)
• Jacobi is convergent if A and (2D-A) are symmetric and positive definite
• The above convergence criterions are not always necessary for convergence…



Jacobi algorithm
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    Choose an initial guess x(0) to the solution
    k = 0
    check if convergence is reached, e.g., ||r(k)||1<²
    while convergence not reached do
        for i := 1 step until n do
            ¾ = 0
            for j := 1 step until n do
                if j ≠ i then
                    ¾ = ¾ + aij xj(k) 
                end if
            end (j-loop)
            xi(k+1) = ( bi - ¾ )/ aii  
        end (i-loop)
        check if convergence is reached
        k = k + 1
    loop (while convergence condition not reached) 



Gauss-Seidel iteration
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The Gauss-Seidel method differs from the Jacobi method in the fact that at the (k+1)-th step 
the available values of xi

(k+1) are being used to update the solution

i.e., P=D-E , N=F
The related over-relaxation iteration (SOR) is
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for i = 1, . . . , n. The method (4.15) can be written in vector form as

(I − ωD−1E)x(k+1) = [(1 − ω)I + ωD−1F]x(k) + ωD−1b (4.16)

from which the iteration matrix is

B(ω) = (I − ωD−1E)−1[(1 − ω)I + ωD−1F]. (4.17)

Multiplying by D both sides of (4.16) and recalling that A = D − (E + F)
yields the following form (4.7) of the SOR method

x(k+1) = x(k) +
(

1
ω

D − E
)−1

r(k).

It is consistent for any ω ̸= 0 and for ω = 1 it coincides with Gauss-Seidel
method. In particular, if ω ∈ (0, 1) the method is called under-relaxation,
while if ω > 1 it is called over-relaxation.

Remarks:
• GS is monotonically convergent if A is symmetric and positive definite
• GS converges also for the same criteria as Jacobi
• GS is not parallelizable
• GS has less memory requirements than Jacobi, since the current iteration can 

overwrite elements of the previous approximation
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The spectral radius of the iteration matrix B is important for the convergence of the 
iterative solver. Using the expressions above, the original problem is (obviously) equivalent 
to solving

This is called a preconditioned system, where P is the preconditioning matrix or left 
preconditioner. Right and centered preconditioners can be introduced as well:

Since the preconditioner acts on the spectral radius of the iteration matrix, it would be 
useful to pick up, for a given linear system, an optimal preconditioner, i.e., a 
preconditioner which is able to make the number of iterations required for convergence 
independent of the size of the system. 
Notice that the choice P=A is optimal but, trivially, “inefficient”.

Note: A diagonal preconditioner is generally effective if A is symmetric positive definite 
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The same result holds for the preconditioned Richardson method, provided
that the matrices P, A and P−1A are symmetric positive definite.

Proof. The convergence is a consequence of Theorem 4.8. Moreover, we notice
that

∥e(k+1)∥A = ∥Rαe(k)∥A = ∥A1/2Rαe(k)∥2 ≤ ∥A1/2RαA−1/2∥2∥A1/2e(k)∥2.

The matrix Rα is symmetric positive definite and is similar to A1/2RαA−1/2.
Therefore,

∥A1/2RαA−1/2∥2 = ρ(Rα).

The result (4.30) follows by noting that ∥A1/2e(k)∥2 = ∥e(k)∥A. A similar proof
can be carried out in the preconditioned case, provided we replace A with P−1A.
✸

Finally, the inequality (4.30) holds even if only P and A are symmetric
positive definite (for the proof, see [QV94], Chapter 2).

4.3.2 Preconditioning Matrices
All the methods introduced in the previous sections can be cast in the form
(4.2), so that they can be regarded as being methods for solving the system

(I − B)x = f = P−1b.

On the other hand, since B=P−1N, system (3.2) can be equivalently refor-
mulated as

P−1Ax = P−1b. (4.31)

The latter is the preconditioned system, being P the preconditioning matrix
or left preconditioner. Right and centered preconditioners can be introduced
as well, if system (3.2) is transformed, respectively, as

AP−1y = b, y = Px,

or

P−1
L AP−1

R y = P−1
L b, y = PRx.

There are point preconditioners or block preconditioners, depending on
whether they are applied to the single entries of A or to the blocks of
a partition of A. The iterative methods considered so far correspond to
fixed-point iterations on a left-preconditioned system. As stressed by (4.25),
computing the inverse of P is not mandatory; actually, the role of P is to
“preconditioning” the residual r(k) through the solution of the additional
system Pz(k) = r(k).
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whether they are applied to the single entries of A or to the blocks of
a partition of A. The iterative methods considered so far correspond to
fixed-point iterations on a left-preconditioned system. As stressed by (4.25),
computing the inverse of P is not mandatory; actually, the role of P is to
“preconditioning” the residual r(k) through the solution of the additional
system Pz(k) = r(k).
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Define the iteration matrix
With a relaxation (or acceleration) parameter ® we get the following stationary Richardson 
method

If we allow ® to be dependent on the iteration index, we get the nonstationary Richardson 
method or semi-iterative method

With iteration matrix at step k: 

Jacobi and GS are stationary Richardson methods with ®=1
For practical applications this is rewritten: z(k) = P−1r(k) (the so-called preconditioned 
residual) à x(k+1) = x(k) + αkz(k) and r(k+1) = b − Ax(k+1) = r(k) −αkAz(k). 
A nonstationary Richardson method requires the following operations: 

• solve the linear system Pz(k) = r(k)

• compute the acceleration parameter αk
• update the solution x(k+1) = x(k) + αkz(k)

• update the residual r(k+1) = r(k) − αkAz(k)
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Unlike the Jacobi method, this scheme is fully sequential. However, it can
be efficiently implemented without storing the solution of the previous step,
with a saving of memory storage.

Program 16 - SOR : SOR method

function [x, iter]= sor ( a, b, x0, nmax, toll, omega)
[n,n]=size(a);
iter = 0; r = b - a * x0; r0 = norm (r); err = norm (r); xold = x0;
while err > toll & iter < nmax
iter = iter + 1;
for i=1:n
s = 0;
for j = 1:i-1, s = s + a (i,j) * x (j); end
for j = i+1:n
s = s + a (i,j) * xold (j);

end
x (i) = omega * ( b(i) - s) / a(i,i) + (1 - omega) * xold (i);

end
x = x’; xold = x; r = b - a * x; err = norm (r) / r0;
end

4.3 Stationary and Nonstationary Iterative
Methods

Denote by

RP = I − P−1A

the iteration matrix associated with (4.7). Proceeding as in the case of
relaxation methods, (4.7) can be generalized introducing a relaxation (or
acceleration) parameter α. This leads to the following stationary Richard-
son method

x(k+1) = x(k) + αP−1r(k), k ≥ 0. (4.23)

More generally, allowing α to depend on the iteration index, the nonsta-
tionary Richardson method or semi-iterative method given by

x(k+1) = x(k) + αkP−1r(k), k ≥ 0. (4.24)

The iteration matrix at the k-th step for these methods (depending on k)
is

R(αk) = I − αkP−1A,
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For symmetric positive definite matrices, any optimal acceleration parameter can be 
dynamically computed at each step k.
First, note that solving system Ax=b is equivalent to finding the minimizer x2Rn of the 
quadratic form

This is also called the energy of system Ax=b, calculating the gradient gives:

Problem: 
• determine the minimizer x of © starting from a point x(0)2Rn and, 
• select suitable directions d(k) along which gets us as close as possible to the solution x.

Where ®k is the length along the step  d(k).
The most natural idea: take the descent direction of maximum slope ∇Φ(x(k)), which yields 
the gradient method or steepest descent method: 
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p ILU(p) Neumann
0 22.3 211.3
1 12 36.91
2 8.6 48.55
3 5.6 18.7

TABLE 4.1. Spectral condition numbers of the preconditioned matrix A of Ex-
ample 4.5 as a function of p

where x is an eigenvector associated with the eigenvalue λ. Equation (4.32)
is an example of generalized eigenvalue problem (see Section 5.9 for a thor-
ough discussion) and the eigenvalue λ can be computed through the fol-
lowing generalized Rayleigh quotient

λ =
(Ax,x)
(Px,x)

.

Applying the Courant-Fisher Theorem (see Section 5.11) yields

λmin(A)
λmax(P)

≤ λ ≤ λmax(A)
λmin(P)

. (4.33)

Relation (4.33) provides a lower and upper bound for the eigenvalues of the
preconditioned matrix as a function of the extremal eigenvalues of A and
P, and therefore it can be profitably used to estimate the condition number
of P−1A. !

4.3.3 The Gradient Method
The expression of the optimal parameter that has been provided in Theo-
rem 4.9 is of limited usefulness in practical computations, since it requires
the knowledge of the extremal eigenvalues of the matrix P−1A. In the spe-
cial case of symmetric and positive definite matrices, however, the optimal
acceleration parameter can be dynamically computed at each step k as
follows.

We first notice that, for such matrices, solving system (3.2) is equivalent
to finding the minimizer x ∈ Rn of the quadratic form

Φ(y) =
1
2
yTAy − yTb,

which is called the energy of system (3.2). Indeed, the gradient of Φ is given
by

∇Φ(y) =
1
2
(AT + A)y − b = Ay − b. (4.34)

As a consequence, if ∇Φ(x) = 0 then x is a solution of the original system.
Conversely, if x is a solution, then

Φ(y) = Φ(x + (y − x)) = Φ(x) +
1
2
(y − x)TA(y − x), ∀y ∈ Rn
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and thus, Φ(y) > Φ(x) if y ̸= x, i.e. x is a minimizer of the functional Φ.
Notice that the previous relation is equivalent to

1
2
∥y − x∥2

A = Φ(y) − Φ(x) (4.35)

where ∥ · ∥A is the A-norm or energy norm, defined in (1.28).
The problem is thus to determine the minimizer x of Φ starting from a

point x(0) ∈ Rn and, consequently, to select suitable directions along which
moving to get as close as possible to the solution x. The optimal direction,
that joins the starting point x(0) to the solution point x, is obviously un-
known a priori. Therefore, we must take a step from x(0) along another
direction d(0), and then fix along this latter a new point x(1) from which
to iterate the process until convergence.

Thus, at the generic step k, x(k+1) is computed as

x(k+1) = x(k) + αkd(k), (4.36)

where αk is the value which fixes the length of the step along d(k). The most
natural idea is to take the descent direction of maximum slope ∇Φ(x(k)),
which yields the gradient method or steepest descent method.

On the other hand, due to (4.34), ∇Φ(x(k)) = Ax(k)−b = −r(k), so that
the direction of the gradient of Φ coincides with that of residual and can
be immediately computed using the current iterate. This shows that the
gradient method, as well as the Richardson method, moves at each step k
along the direction d(k) = r(k).

To compute the parameter αk let us write explicitly Φ(x(k+1)) as a func-
tion of a parameter α

Φ(x(k+1)) =
1
2
(x(k) + αr(k))TA(x(k) + αr(k)) − (x(k) + αr(k))Tb.

Differentiating with respect to α and setting it equal to zero, yields the
desired value of αk

αk =
r(k)T r(k)

r(k)TAr(k)
(4.37)

which depends only on the residual at the k-th step. For this reason, the
nonstationary Richardson method employing (4.37) to evaluate the acceler-
ation parameter, is also called the gradient method with dynamic parameter
(shortly, gradient method), to distinguish it from the stationary Richardson
method (4.23) or gradient method with constant parameter, where αk = α
is a constant for any k ≥ 0.

Summarizing, the gradient method can be described as follows:
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à d(k) =r(k) 
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To compute the parameter αk let us write explicitly Φ(x(k+1)) as a function of parameter α:

Differentiating with respect to α and setting it equal to zero, yields

This non-stationary Richardson method is called gradient method with dynamic parameter 
or just gradient method:

For a symmetric, positive definite matrix the gradient method is convergent for any choice 
of x(0)
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given x(0) ∈ Rn, for k = 0, 1, . . . until convergence, compute

r(k) = b − Ax(k)

αk =
r(k)T r(k)

r(k)TAr(k)

x(k+1) = x(k) + αkr(k).

Theorem 4.10 Let A be a symmetric and positive definite matrix; then
the gradient method is convergent for any choice of the initial datum x(0)

and

∥e(k+1)∥A ≤ K2(A) − 1
K2(A) + 1

∥e(k)∥A, k = 0, 1, . . . , (4.38)

where ∥ · ∥A is the energy norm defined in (1.28).

Proof. Let x(k) be the solution generated by the gradient method at the k-th
step. Then, let x(k+1)

R be the vector generated by taking one step of the non
preconditioned Richardson method with optimal parameter starting from x(k),
i.e., x(k+1)

R = x(k) + αoptr(k).
Due to Corollary 4.1 and (4.28), we have

∥e(k+1)
R ∥A ≤ K2(A) − 1

K2(A) + 1
∥e(k)∥A,

where e(k+1)
R = x(k+1)

R −x. Moreover, from (4.35) we have that the vector x(k+1),
generated by the gradient method, is the one that minimizes the A-norm of
the error among all vectors of the form x(k) + θr(k), with θ ∈ R. Therefore,
∥e(k+1)∥A ≤ ∥e(k+1)

R ∥A which is the desired result. ✸

We notice that the line through x(k) and x(k+1) is tangent at the point
x(k+1) to the ellipsoidal level surface

{
x ∈ Rn : Φ(x) = Φ(x(k+1))

}
(see

also Figure 4.5).

Relation (4.38) shows that convergence of the gradient method can be
quite slow if K2(A) = λ1/λn is large. A simple geometric interpretation of
this result can be given in the case n = 2. Suppose that A=diag(λ1, λ2),
with 0 < λ2 ≤ λ1 and b = (b1, b2)T .

In such a case, the curves corresponding to Φ(x1, x2) = c, as c varies
in R+, form a sequence of concentric ellipses whose semi-axes have length
inversely proportional to the values λ1 and λ2. If λ1 = λ2, the ellipses
degenerate into circles and the direction of the gradient crosses the center
directly, in such a way that the gradient method converges in one iteration.
Conversely, if λ1 ≫ λ2, the ellipses become strongly eccentric and the
method converges quite slowly, as shown in Figure 4.5, moving along a
“zig-zag” trajectory.
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We can calculate the local minimum for © along any direction p(k) and find ®k as the value 
minimizing ©(x(k)+® p(k)), yielding

Instead of just using the gradient of © as direction (i.e. the residual), we now use the 
definition of an optimal direction x(k) with respect to a direction p¹ 0

From this it follows that p must be orthogonal to r(k), since

For an iteration x(k+1)=x(k)+q to preserve this optimality we need also
Which means the descent directions must be mutually A-orthogonal or A-conjugate 
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Example 4.6 Let us solve with the gradient method the linear system with ma-
trix Am ∈ Rm×m generated with the MATLAB commands G=numgrid(’S’,n);
A=delsq(G) where m = (n − 2)2. This matrix is associated with the discretiza-
tion of the differential Laplace operator on the domain [−1, 1]2. The right-hand
side bm is selected in such a way that the exact solution is the vector 1T ∈ Rm.
The matrix Am is symmetric and positive definite for any m and becomes ill-
conditioned for large values of m. We run Program 19 in the cases m = 16 and
m = 400, with x(0) = 0T , tol=10−10 and maxit=200. If m = 400, the method
fails to satisfy the stopping test within the admissible maximum number of it-
erations and exhibits an extremely slow reduction of the residual (see Figure
4.6). Actually, K2(A400) ≃ 258. If, however, we precondition the system with the
matrix P = RT

inRin, where Rin is the lower triangular matrix in the Cholesky
incomplete factorization of A, the algorithm fulfills the convergence within the
maximum admissible number of iterations (indeed, now K2(P−1A400) ≃ 38). •
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FIGURE 4.6. The residual normalized to the starting one, as a function of the
number of iterations, for the gradient method applied to the systems in Example
4.6. The curves labelled (a) and (b) refer to the case m = 16 with the non precon-
ditioned and preconditioned method, respectively, while the curves labelled (c)
and (d) refer to the case m = 400 with the non preconditioned and preconditioned
method, respectively

4.3.4 The Conjugate Gradient Method
The gradient method consists essentially of two phases: choosing a descent
direction (the one of the residual) and picking up a point of local minimum
for Φ along that direction. The second phase is independent of the first one
since, for a given direction p(k), we can determine αk as being the value
of the parameter α such that Φ(x(k) +αp(k)) is minimized. Differentiating
with respect to α and setting to zero the derivative at the minimizer, yields

αk =
p(k)T r(k)

p(k)TAp(k)
, (4.39)
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instead of (4.37). The question is how to determine p(k). A different ap-
proach than the one which led to identify p(k) with r(k) is suggested by the
following definition.

Definition 4.4 A direction x(k) is said to be optimal with respect to a
direction p ̸= 0 if

Φ(x(k)) ≤ Φ(x(k) + λp), ∀λ ∈ R. (4.40)

If x(k) is optimal with respect to any direction in a vector space V, we say
that x(k) is optimal with respect to V. !

From the definition of optimality, it turns out that p must be orthogonal
to the residual r(k). Indeed, from (4.40) we conclude that Φ admits a local
minimum along p for λ = 0, and thus the partial derivative of Φ with
respect to λ must vanish at λ = 0. Since

∂Φ
∂λ

(x(k) + λp) = pT (Ax(k) − b) + λpTAp,

we therefore have

∂Φ
∂λ

(x(k))|λ=0 = 0 iff pT (r(k)) = 0,

that is, p ⊥ r(k). Notice that the iterate x(k+1) of the gradient method
is optimal with respect to r(k) since, due to the choice of αk, we have
r(k+1) ⊥ r(k), but this property no longer holds for the successive iterate
x(k+2) (see Exercise 12). It is then natural to ask whether there exist descent
directions that maintain the optimality of iterates. Let

x(k+1) = x(k) + q,

and assume that x(k) is optimal with respect to a direction p (thus, r(k) ⊥
p). Let us impose that x(k+1) is still optimal with respect to p, that is,
r(k+1) ⊥ p. We obtain

0 = pT r(k+1) = pT (r(k) − Aq) = −pTAq.

The conclusion is that, in order to preserve optimality between succes-
sive iterates, the descent directions must be mutually A-orthogonal or A-
conjugate, i.e.

pTAq = 0.

A method employing A-conjugate descent directions is called conjugate.
The next step is how to generate automatically a sequence of conjugate
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For a symmetric and positive definite matrix, any method which employs conjugate 
directions to solve Ax=b terminates after at most n steps, yielding the exact solution.

These conjugate directions can be constructed, yielding finally the iteration:
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FIGURE 4.7. Descent directions for the conjugate gradient method (denoted by
CG, dashed line) and the gradient method (denoted by G, solid line). Notice that
the CG method reaches the solution after two iterations

form

αk =
p(k)T r(k)

p(k)TAp(k)

x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αkAp(k)

βk =
(Ap(k))T r(k+1)

(Ap(k))Tp(k)

p(k+1) = r(k+1) − βkp(k).

It can also be shown (see Exercise 13) that the two parameters αk and βk

may be alternatively expressed as

αk =
∥r(k)∥2

2

p(k)TAp(k)
, βk =

∥r(k+1)∥2
2

∥r(k)∥2
2

. (4.45)

We finally notice that, eliminating the descent directions from r(k+1) =
r(k) − αkAp(k), the following recursive three-terms relation is obtained for
the residuals (see Exercise 14)

Ar(k) = − 1
αk

r(k+1) +
(

1
αk

− βk−1

αk−1

)
r(k) +

βk

αk−1
r(k−1). (4.46)

As for the convergence of the CG method, we have the following results.

Theorem 4.11 Let A be a symmetric and positive definite matrix. Any
method which employs conjugate directions to solve (3.2) terminates after
at most n steps, yielding the exact solution.

This is the CG method, with r(0) = b−Ax(0) and p(0) = r(0) 
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No covered here, but sometimes useful.
These methods requires saving the vectors of the Krylov subspace of order m:

And solving an iteration

And qk-1 being a appropriately chosen polynomial.
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where λ(i)
1 and λ(i)

2 , for i = 1, . . . , n, are the eigenvalues of A1 and A2,
respectively. The method converges if ρ(B) < 1, which is always verified if
α1 = α2 = α > 0. Moreover (see [Axe94]) if γ ≤ λ(j)

i ≤ δ ∀i = 1, . . . , n,
∀j = 1, 2, for suitable γ and δ then the ADI method converges with the
choice α1 = α2 = 1/

√
δγ, provided that γ/δ tends to 0 as the size of A

grows. In such an event the corresponding spectral radius satisfies

ρ(B) ≤
(

1 −
√
γ/δ

1 +
√
γ/δ

)2

.

4.4 Methods Based on Krylov Subspace Iterations

In this section we introduce iterative methods based on Krylov subspace
iterations. For the proofs and further analysis, we refer to [Saa96], [Axe94]
and [Hac94].

Consider the Richardson method (4.24) with P=I; the residual at the
k-th step can be related to the initial residual as

r(k) =
k−1∏

j=0

(I − αjA)r(0) (4.51)

so that r(k) = pk(A)r(0), where pk(A) is a polynomial in A of degree k. If
we introduce the space

Km(A;v) = span
{
v,Av, . . . ,Am−1v

}
, (4.52)

it immediately appears from (4.51) that r(k) ∈ Kk+1(A; r(0)). The space
defined in (4.52) is called the Krylov subspace of order m. It is a subspace
of the set spanned by all the vectors u ∈ Rn that can be written as u =
pm−1(A)v, where pm−1 is a polynomial in A of degree ≤ m− 1.

In an analogous manner as for (4.51), it is seen that the iterate x(k) of
the Richardson method is given by

x(k) = x(0) +
k−1∑

j=0

αjr(j)

so that x(k) belongs to the following space

Wk =
{
v = x(0) + y, y ∈ Kk(A; r(0))

}
. (4.53)

Notice also that
∑k−1

j=0 αjr(j) is a polynomial in A of degree less than k−1.
In the non preconditioned Richardson method we are thus looking for an
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approximate solution to x in the space Wk. More generally, we can think
of devising methods that search for approximate solutions of the form

x(k) = x(0) + qk−1(A)r(0), (4.54)

where qk−1 is a polynomial selected in such a way that x(k) be, in a sense
that must be made precise, the best approximation of x in Wk. A method
that looks for a solution of the form (4.54) with Wk defined as in (4.53) is
called a Krylov method.

A first question concerning Krylov subspace iterations is whether the
dimension of Km(A;v) increases as the order m grows. A partial answer is
provided by the following result.

Property 4.7 Let A ∈ Rn×n and v ∈ Rn. The Krylov subspace Km(A;v)
has dimension equal to m iff the degree of v with respect to A, denoted by
degA(v), is not less than m, where the degree of v is defined as the minimum
degree of a monic non null polynomial p in A, for which p(A)v = 0.

The dimension of Km(A;v) is thus equal to the minimum between m and
the degree of v with respect to A and, as a consequence, the dimension
of the Krylov subspaces is certainly a nondecreasing function of m. Notice
that the degree of v cannot be greater than n due to the Cayley-Hamilton
Theorem (see Section 1.7).

Example 4.8 Consider the matrix A = tridiag4(−1, 2,−1). The vector v =
(1, 1, 1, 1)T has degree 2 with respect to A since p2(A)v = 0 with p2(A) = I4 −
3A+A2, while there is no monic polynomial p1 of degree 1 for which p1(A)v = 0.
As a consequence, all Krylov subspaces from K2(A;v) on, have dimension equal
to 2. The vector w = (1, 1,−1, 1)T has, instead, degree 4 with respect to A. •

For a fixed m, it is possible to compute an orthonormal basis for Km(A;v)
using the so-called Arnoldi algorithm.

Setting v1 = v/∥v∥2, this method generates an orthonormal basis {vi}
for Km(A;v1) using the Gram-Schmidt procedure (see Section 3.4.3). For
k = 1, . . . ,m, the Arnoldi algorithm computes

hik = vT
i Avk, i = 1, 2, . . . , k,

wk = Avk −
k∑

i=1

hikvi, hk+1,k = ∥wk∥2.
(4.55)

If wk = 0 the process terminates and in such a case we say that a breakdown
of the algorithm has occurred; otherwise, we set vk+1 = wk/∥wk∥2 and the
algorithm restarts, incrementing k by 1.
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• Numerical integration
• Root finding 


