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Homework

due 2025-03-18 , before class

midterm : Thursday, March 27, 2025, 12:30-13:45

Exams (tentatively) final:  thd

XIl. BOSE AND FERMI STATISTICS [(2+6+6+5) PTS] [BONUS: (1+2+2) PTS]

We consider N non-interacting Bosons (Fermions) having single par-

ticle states |v) with energies E,. Microstates are determined by

the occupation numbers n, of all single particle states, where n,, =

0,1,2,... for Bosons or n, = 0,1 for Fermions.

In a coarse-grained description we group g; quasi-degenerate single

particle states into groups i = 1,2,.... The particles in each group

have energy ¢; and the occupation number per group shall be N;

(see figure). For example: ¢q ~ Ey ~ Ey ~ ... ~ E,, Ny = ..
ni+.. .—|—ng1; €y E91+1 LR Eg1+92, NQ = ngl+1—|—. . ~+ngl+g2-

A macrostate is defined by the occupation numbers M = {N;}.
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Solve each of the following parts for Bosons and Fermions.

a) How many microstates, W(Np, Na,...) correspond to a ng, » Eg, =
macrostate M7 (see lecture) [Bonus point: W(Ny,Na,...) == = } 8, N, g
for classical, distinguishable particles.] ni, E; e

b) Now, the total particle number N = »". N; and energy E =

>, €ilN; shall be fixed. Find the occupation numbers N; of
the macrostate, which has the largest number of microstates.
[Bonus points: Do the same for classical, distinguishable parti-
cles.]

% Use the method of Lagrange multipliers as shown in the lec-
ture and use N;, g; > 1 and additionally g; — N; > 1 for Fermions.

c) Approximate W (M) = W (N; + ANy, Ny + ANy, ...) by ex-
panding In W (M) in second order in ANy = Ny — Ny. [Bonus
points: Do the same for classical, distinguishable particles.]

d) Calculate (N;), (AN;), and ((AN;)?) using the approximation

found in c). Discuss the connection between (N;) and N; as
well as the magnitude of the fluctuations ((AN;)?).


www.aglatz.net/teaching/statphys_S2025

XIlll. CONTINUUM LIMIT [10 PTS]

For the calculation of particle fluctuations, we usually replace the summation over particle numbers by integrals, e.g.

ZN(AN)ZEAS(N)/kB de(AN)ZeAS(N)/kB
T S eASMNRs T [dN AS(NI/ks

((AN)?)

with AS(N) ~ —kp5(AN)?. Determine under which condition this continuum approximation is valid. Approximate the
error by using the Poisson summation formula

> orw= 3 [ an ey,

N=—00 k=—o0

XIV. ONE-DIMENSIONAL RELATIVISTIC GAS [(3+3+3+3) PTS]
Here we consider a non-interacting gas of IV relativistic particles in one dimension. The gas is confined in a container of
length L, i.e., the coordinate of each particle is limited to 0 < ¢; < L. The energy of the i*" particle is given by ¢; = c|p;|.
a) Calculate the single particle partition function Z;(T, L) for given energy F and particle number N.
b) Calculate the average energy F; and the heat capacity C per particle from Z;(T, L).

c) Calculate the Boltzmann entropy Sg(FE, N) of all N particles. Consider them as indistinguishable.
% Use the definition of the free energy.

d) Show that the Boltzmann entropy is extensive in the limit of large particle numbers.

% Use Stirling’s formula for large N.

XV. PROJECTION OPERATORS [1 PT EACH]

Projection operators, .Jy7, play an important role in defining macrostates for quantum systems. Let us assume that the
common eigenstates | X,,) of macro-operators span an orthonormal basis of the Hilbert space, i.e., (X,| X,) =4, and
>, 1Xu) (X, | = 1. With this, macrostates, M, are defined as disjoint groups (v € M) whose projection operators are

Ju =Y X)) (X,].

veM
Prove that the Jy; form a complete set of projection operators:
a) > Ju =1
b) Jardar = Sarar Jar
c) all eigenvalues of Jas are either 0 or 1.

For Bosons and Fermions the symmetrization (.J,) and anti-symmetrization (.J_) operators are defined as

1 .
Je = > (FXPIP,
P

where the P are permutation operators (which permute the particle coordinates) and x(P) is the number of transpositions
in permutation P. Show that:

d) J3 = Js
e) j+j_ =0
f) [J+, O] = 0 for all observables with [P, 0] =0, VP



XVI. PRESSURE EXCHANGE [6 PTS]

Consider N particles having the total energy E in a container of vol-
ume V. The container is split by a freely moving piston into two
chambers i = 1,2 with variable volumes V; (V = Vi + V,). Each
chamber has a fixed number of particles N; (N = N; + N;). We
assume that energy exchange between the two chambers is possible.
Show that not only the temperature, but also the pressure is equal
in both chambers in thermal equilibrium. Assume that the entropy in

each chamber is given by a known function Sg) (N;, E;, V).

m
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