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XXII. IDEAL FERMIONS AT LOW TEMPERATURES AND SOMMERFELD EXPANSION [(5+9+3) PTS]

Here you should apply the Sommerfeld expansion to calculate properties of Fermions at low temperatures (see lecture).

a) Calculate E(T,N, V ) up to order O(T 2) for a given single particle density of states (DoS) ρ(ϵ). Derive from that
the result for the specific heat (in order O(T )):

CV (T,N, V ) =

(
∂E

∂T

)
V,N

=
∂E

∂T
+

∂E

∂µ

(
∂µ

∂T

)
V,N

b) Derive an expression for the single particle DoS ρ(ϵ) in d dimensions for non-relativistic Fermions, with energy-
momentum relation ϵ = p2/(2m). What is special for d = 2? Use this expression to calculate the energy, E,
(order O(T 2)), heat capacity, CV , (order O(T )), and pressure, p(T,N, V ) = −(∂E/∂V )N,T , (order O(T 2)) - all for
arbitrary dimension d.

c) Calculate the Fermi-energy and heat capacity for relativistic Fermions with linear energy-momentum relation, ϵp = c|p|
(e.g., electrons in a white dwarf star) for arbitrary dimension d.
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XXIII. BOSE-EINSTEIN CONDENSATION [(4+6+8) PTS]

The grand canonical potential for an ideal (non-relativistic) Bose gas is given by

J(T, µ, V ) = T ln(1− z)− T
V

λ3
β

Li5/2(z) ,

where z = eµ/T , λβ = h/
√
2πmT , and Lis(z) is the polylogarithm function.

a) Use the potential J and calculate the entropy S(T, V, µ) = −( ∂J∂T )V,µ above and below the transition point of the
Bose condensation. Show that S is continuous at the transition point and vanishes for V = 0 and T = 0.

b) Calculate the specific heat

CV (T, V, z) = T

(
∂S

∂T

)
V,N

above and below the transition. In the following the volume is fixed. Notice, that the partial derivative of S(T, V, µ)
needs to be calculated while keeping N constant, i.e.,(

∂S

∂T

)
V,N

=
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)
z
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∂z
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N

.

The derivative ∂z/∂T is obtained by applying the operator (∂/∂T )N on both sides of

N(T, V, µ) = −
(
∂J

∂µ

)
T,V

=
z

1− z
+

V

λ3
β

Li3/2(z) . (1)

Is the specific heat continuous at the transition point?

c) Calculate the inverse isothermal compressibility

K−1
T = −V

(
∂p

∂V

)
T,N

above and below the transition. Show that KT diverges at the transition point. Notice again, that the derivative is
to be calculated for constant N (T is fixed):

p ≈ T

λ3
β

Li5/2(z) ⇒
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∂z
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.

In order to calculate
(
∂V
∂z

)
T,N

solve eq. (1) for V . Use the above results to calculate KT as function of the specific
volume v = V/N near the critical volume vc(T ) = λ3

β/Li3/2(1) at which the Bose condensation occurs, i.e., for
v − vc ≪ vc. Use the series expansion

Li3/2(z) = Li3/2(1)
(
1− 1.36

√
1− z + . . .

)
.

If you calculated all correctly, S is continuous at the transition point and vanishes at v = 0 (or T = 0). Furthermore,
CV (T, V, z) has a jump in the first derivative and KT diverges at the transition point. Therefore, the Bose-Einstein
condensation (BEC) is a phase transition of second order, if one considers the mixed phase of gas and condensate in the
region v < vc as a new phase. On the other hand, if the new phase is only the phase when all particles are in the condensate
at T = 0 (this state corresponds to the specific volume v = 0, since there is no repulsion), the BEC is a phase transition
of first order for all isotherms.
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